

Welcome to logisland’s documentation!

Chat with us on Gitter

[image: Gitter]
 [https://gitter.im/logisland/logisland?utm_source=share-link&utm_medium=link&utm_campaign=share-link]Download the latest release build [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

Contents:

	Introduction

	Core concepts
	What is a pattern ?

	From raw to structure

	Event pattern mining

	Architecture
	Data driven architecture

	Technical design

	User Documentation
	Components

	Dynamic properties

	Expression Language

	Developer Documentation
	Developer Guide

	Components

	Object Model

	Documentation

	Plugins
	What’s a plugin?

	How a plugin is packaged

	How about naming?

	Getting started

	Which module contains my component?

	How about the distribution?

	Connectors
	Introduction

	Prerequisites

	Getting started

	Configuring

	Choosing the right converter

	Putting all together

	Going further

	Tutorials
	Prerequisites

	Apache logs indexing

	Apache logs indexing with elasticsearch

	Apache logs indexing with mongo

	Apache logs indexing with solr

	Store Apache logs to Redis K/V store

	Threshold based alerting on Apache logs with Redis K/V store

	Alerting & Query Matching

	Event aggregation

	Index Apache logs Enrichment

	Time series sampling & Outliers detection

	Bro/Logisland integration - Indexing Bro events

	Netflow/Logisland integration - Handling Netflow traffic

	Capturing Network packets in Logisland

	Generate Unique Ids

	Index JMS messages

	Index blockchain transactions

	Extract Records from Excel File

	IIoT with MQTT and Logisland Data-Historian

	IIoT with OPC and Logisland

	Integrate Kafka Connect Sources & Sinks

	Index JDBC messages

	API design
	Java API

	Logisland REST API
	Introduction

	Usage

	API Specification

	What’s new in logisland ?
	v1.1.1

	v1.0.0

	v0.14.0

	v0.10.0

	v0.9.8

	v0.9.7

	v0.9.6

	v0.9.5

	Frequently Asked Questions.
	I already use ELK, why would I need to use LogIsland ?

	Do I need Hadoop to play with LogIsland ?

	How do I make it scale ?

	What’s the difference between Apache NIFI and LogIsland ?

	Error : realpath not found

	How to deploy LogIsland as a Single node Docker container

	How to deploy LogIsland in an Hadoop cluster ?

	How can I configure Kafka to avoid irrecoverable exceptions ?

	How to purge a Kafka queue ?

Indices and tables

	Index

	Module Index

	Search Page

Introduction

you can find a quick presentation below :

 Core concepts

Core concepts

The main goal of LogIsland framework is to provide tools to automatically extract valuable knowledge from historical log data. To do so we need two different kind of processing over our technical stack :

	Grab events from logs

	Perform Event Pattern Mining (EPM)

What we know about Log/Event properties :

	they’re naturally temporal

	they carry a global type (user request, error, operation, system failure…)

	they’re semi-structured

	they’re produced by software, so we can deduce some templates from them

	some of them are correlated

	some of them are frequent (or rare)

	some of them are monotonic

	some of them are of great interest for system operators

What is a pattern ?

Patterns, actually are a set of items subsequences or substructures that occur frequently together in a data set we call this strongly correlated.
Patterns usually represent intrinsic and important properties of data.

From raw to structure

The first part of the process is to extract semantics from semi-structured data such as logs.
The main objective of this phase is to introduce a canonical semantics in log data that we will call Event which will be easier for us to process with data mining algorithm

	log parser

	log classification/clustering

	event generation

	event summarization

Event pattern mining

Once we have a cannonical semantic in the form of events we can perform time window processing over our events set. All the algorithms we can run on it will help us to find some of the following properties :

	sequential patterns

	events burst

	frequent pattern

	rare event

	highly correlated events

	correlation between time series & events

 Architecture

Architecture

Is there something clever out there ?

Most of the systems in this data world can be observables through their events.
You just have to look at the event sourcing pattern [https://msdn.microsoft.com/en-us/library/dn589792.aspx] to get an idea of how we could define any system state as a sequence of temporal events. The main source of events are the logs files, application logs, transaction logs, sensor data, etc.

Large and complex systems, made of number of heterogeneous components are not easy to monitor, especially when have to deal with distributed computing. Most of the time of IT resources is spent in maintenance tasks, so there’s a real need for tools to help achieving them.

Note

Basicaly LogIsland will help us to handle system events from log files.

Data driven architecture

[image: _images/data-driven-computing.png]

Technical design

LogIsland is an event processing framework based on Kafka and Spark. The main goal of this Open Source platform is to
abstract the level of complexity of complex event processing at scale. Of course many people start with an ELK stack,
which is really great but not enough to elaborate a really complete system monitoring tool.
So with LogIsland, you’ll move the log processing burden to a powerful distributed stack.

Kafka acts a the distributed message queue middleware while Spark is the core of the distributed processing.
LogIsland glue those technologies to simplify log complex event processing at scale.

[image: _images/logisland-workflow.png]

 User Documentation

User Documentation

Contents:

	Components
	Engines Documentation

	Common-processors

	Other-processors

	Services

	Dynamic properties
	Overview

	Structure of a dynamic properties

	Usage of a dynamic properties

	Conclusion

	Expression Language
	Overview

	Structure of a Logisland Expression

	Usage of a Logisland Expression

	Conclusion

 Components

Components

Contents:

	Engines Documentation
	Engine-spark

	Engine-vanilla

	Common-processors
	AddFields

	ApplyRegexp

	BulkPut

	CheckAlerts

	CheckThresholds

	ComputeTags

	ConvertFieldsType

	ConvertSimpleDateFormatFields

	DebugStream

	EnrichRecords

	EvaluateJsonPath

	ExpandMapFields

	FilterRecords

	FlatMap

	GenerateRandomRecord

	ModifyId

	MultiGet

	NormalizeFields

	ParseProperties

	RemoveFields

	SelectDistinctRecords

	SendMail

	SetJsonAsFields

	SplitField

	SplitText

	SplitTextMultiline

	SplitTextWithProperties

	Other-processors
	ParseUserAgent

	BulkAddElasticsearch

	ConsolidateSession

	DetectOutliers

	EnrichRecordsElasticsearch

	EvaluateXPath

	ExcelExtract

	FetchHBaseRow

	IncrementalWebSession

	IpToFqdn

	IpToGeo

	MatchIP

	MatchQuery

	MultiGetElasticsearch

	ParseBroEvent

	ParseGitlabLog

	ParseNetflowEvent

	ParseNetworkPacket

	PutHBaseCell

	RunPython

	SampleRecords

	URLDecoder

	setSourceOfTraffic

	Services
	CSVKeyValueCacheService

	CassandraControllerService

	Elasticsearch_2_4_0_ClientService

	Elasticsearch_5_4_0_ClientService

	HBase_1_1_2_ClientService

	LRUKeyValueCacheService

	MaxmindIpToGeoService

	MongoDBControllerService

	RedisKeyValueCacheService

	Solr_5_5_5_ClientService

	Solr_6_4_2_ChronixClientService

	Solr_6_6_2_ClientService

 Engines Documentation

Engines Documentation

Contents:

	Engine-spark
	ConsoleStructuredStreamProviderService

	DummyRecordStream

	KafkaConnectBaseProviderService

	KafkaConnectStructuredSinkProviderService

	KafkaConnectStructuredSourceProviderService

	KafkaRecordStreamDebugger

	KafkaRecordStreamHDFSBurner

	KafkaRecordStreamParallelProcessing

	KafkaRecordStreamSQLAggregator

	KafkaStreamProcessingEngine

	KafkaStructuredStreamProviderService

	MQTTStructuredStreamProviderService

	RemoteApiStreamProcessingEngine

	StructuredStream

	Engine-vanilla
	AmqpClientPipelineStream

	KafkaStreamsPipelineStream

	PlainJavaEngine

 Engine-spark

Engine-spark

ConsoleStructuredStreamProviderService

No description provided.

Class

com.hurence.logisland.stream.spark.structured.provider.ConsoleStructuredStreamProviderService

Tags

None.

Properties

This component has no required or optional properties.

DummyRecordStream

No description provided.

Class

com.hurence.logisland.stream.spark.DummyRecordStream

Tags

None.

Properties

This component has no required or optional properties.

KafkaConnectBaseProviderService

No description provided.

Class

com.hurence.logisland.stream.spark.provider.KafkaConnectBaseProviderService

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	kc.connector.class

	The class canonical name of the kafka connector to use.

	
	null

	false

	false

	kc.connector.properties

	The properties (key=value) for the connector.

	
	
	false

	false

	kc.data.key.converter

	Key converter class

	
	null

	false

	false

	kc.data.key.converter.properties

	Key converter properties

	
	
	false

	false

	kc.data.value.converter

	Value converter class

	
	null

	false

	false

	kc.data.value.converter.properties

	Value converter properties

	
	
	false

	false

	kc.worker.tasks.max

	Max number of threads for this connector

	
	1

	false

	false

	kc.partitions.max

	Max number of partitions for this connector.

	
	null

	false

	false

	kc.connector.offset.backing.store

	The underlying backing store to be used.

	memory (Standalone in memory offset backing store. Not suitable for clustered deployments unless source is unique or stateless), file (Standalone filesystem based offset backing store. You have to specify the property offset.storage.file.filename for the file path.Not suitable for clustered deployments unless source is unique or standalone), kafka (Distributed kafka topic based offset backing store. See the javadoc of class org.apache.kafka.connect.storage.KafkaOffsetBackingStore for the configuration options.This backing store is well suited for distributed deployments.)

	memory

	false

	false

	kc.connector.offset.backing.store.properties

	Properties to configure the offset backing store

	
	
	false

	false

KafkaConnectStructuredSinkProviderService

No description provided.

Class

com.hurence.logisland.stream.spark.provider.KafkaConnectStructuredSinkProviderService

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	kc.connector.class

	The class canonical name of the kafka connector to use.

	
	null

	false

	false

	kc.connector.properties

	The properties (key=value) for the connector.

	
	
	false

	false

	kc.data.key.converter

	Key converter class

	
	null

	false

	false

	kc.data.key.converter.properties

	Key converter properties

	
	
	false

	false

	kc.data.value.converter

	Value converter class

	
	null

	false

	false

	kc.data.value.converter.properties

	Value converter properties

	
	
	false

	false

	kc.worker.tasks.max

	Max number of threads for this connector

	
	1

	false

	false

	kc.partitions.max

	Max number of partitions for this connector.

	
	null

	false

	false

	kc.connector.offset.backing.store

	The underlying backing store to be used.

	memory (Standalone in memory offset backing store. Not suitable for clustered deployments unless source is unique or stateless), file (Standalone filesystem based offset backing store. You have to specify the property offset.storage.file.filename for the file path.Not suitable for clustered deployments unless source is unique or standalone), kafka (Distributed kafka topic based offset backing store. See the javadoc of class org.apache.kafka.connect.storage.KafkaOffsetBackingStore for the configuration options.This backing store is well suited for distributed deployments.)

	memory

	false

	false

	kc.connector.offset.backing.store.properties

	Properties to configure the offset backing store

	
	
	false

	false

KafkaConnectStructuredSourceProviderService

No description provided.

Class

com.hurence.logisland.stream.spark.provider.KafkaConnectStructuredSourceProviderService

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	kc.connector.class

	The class canonical name of the kafka connector to use.

	
	null

	false

	false

	kc.connector.properties

	The properties (key=value) for the connector.

	
	
	false

	false

	kc.data.key.converter

	Key converter class

	
	null

	false

	false

	kc.data.key.converter.properties

	Key converter properties

	
	
	false

	false

	kc.data.value.converter

	Value converter class

	
	null

	false

	false

	kc.data.value.converter.properties

	Value converter properties

	
	
	false

	false

	kc.worker.tasks.max

	Max number of threads for this connector

	
	1

	false

	false

	kc.partitions.max

	Max number of partitions for this connector.

	
	null

	false

	false

	kc.connector.offset.backing.store

	The underlying backing store to be used.

	memory (Standalone in memory offset backing store. Not suitable for clustered deployments unless source is unique or stateless), file (Standalone filesystem based offset backing store. You have to specify the property offset.storage.file.filename for the file path.Not suitable for clustered deployments unless source is unique or standalone), kafka (Distributed kafka topic based offset backing store. See the javadoc of class org.apache.kafka.connect.storage.KafkaOffsetBackingStore for the configuration options.This backing store is well suited for distributed deployments.)

	memory

	false

	false

	kc.connector.offset.backing.store.properties

	Properties to configure the offset backing store

	
	
	false

	false

KafkaRecordStreamDebugger

No description provided.

Class

com.hurence.logisland.stream.spark.KafkaRecordStreamDebugger

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	kafka.error.topics

	Sets the error topics Kafka topic name

	
	_errors

	false

	false

	kafka.input.topics

	Sets the input Kafka topic name

	
	_raw

	false

	false

	kafka.output.topics

	Sets the output Kafka topic name

	
	_records

	false

	false

	avro.input.schema

	the avro schema definition

	
	null

	false

	false

	avro.output.schema

	the avro schema definition for the output serialization

	
	null

	false

	false

	kafka.input.topics.serializer

	No Description Provided.

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	com.hurence.logisland.serializer.KryoSerializer

	false

	false

	kafka.output.topics.serializer

	No Description Provided.

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	com.hurence.logisland.serializer.KryoSerializer

	false

	false

	kafka.error.topics.serializer

	No Description Provided.

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	com.hurence.logisland.serializer.JsonSerializer

	false

	false

	kafka.topic.autoCreate

	define wether a topic should be created automatically if not already exists

	
	true

	false

	false

	kafka.topic.default.partitions

	if autoCreate is set to true, this will set the number of partition at topic creation time

	
	20

	false

	false

	kafka.topic.default.replicationFactor

	if autoCreate is set to true, this will set the number of replica for each partition at topic creation time

	
	3

	false

	false

	kafka.metadata.broker.list

	a comma separated list of host:port brokers

	
	sandbox:9092

	false

	false

	kafka.zookeeper.quorum

	No Description Provided.

	
	sandbox:2181

	false

	false

	kafka.manual.offset.reset

	What to do when there is no initial offset in Kafka or if the current offset does not exist any more on the server (e.g. because that data has been deleted):

earliest: automatically reset the offset to the earliest offset

latest: automatically reset the offset to the latest offset

none: throw exception to the consumer if no previous offset is found for the consumer’s group

anything else: throw exception to the consumer.

	latest (the offset to the latest offset), earliest (the offset to the earliest offset), none (the latest saved offset)

	earliest

	false

	false

	kafka.batch.size

	measures batch size in total bytes instead of the number of messages. It controls how many bytes of data to collect before sending messages to the Kafka broker. Set this as high as possible, without exceeding available memory. The default value is 16384.

If you increase the size of your buffer, it might never get full.The Producer sends the information eventually, based on other triggers, such as linger time in milliseconds. Although you can impair memory usage by setting the buffer batch size too high, this does not impact latency.

If your producer is sending all the time, you are probably getting the best throughput possible. If the producer is often idle, you might not be writing enough data to warrant the current allocation of resources.

	
	16384

	false

	false

	kafka.linger.ms

	linger.ms sets the maximum time to buffer data in asynchronous mode. For example, a setting of 100 batches 100ms of messages to send at once. This improves throughput, but the buffering adds message delivery latency.

By default, the producer does not wait. It sends the buffer any time data is available.

Instead of sending immediately, you can set linger.ms to 5 and send more messages in one batch. This would reduce the number of requests sent, but would add up to 5 milliseconds of latency to records sent, even if the load on the system does not warrant the delay.

The farther away the broker is from the producer, the more overhead required to send messages. Increase linger.ms for higher latency and higher throughput in your producer.

	
	5

	false

	false

	kafka.acks

	The number of acknowledgments the producer requires the leader to have received before considering a request complete. This controls the durability of records that are sent. The following settings are common: <code>acks=0</code> If set to zero then the producer will not wait for any acknowledgment from the server at all. The record will be immediately added to the socket buffer and considered sent. No guarantee can be made that the server has received the record in this case, and the <code>retries</code> configuration will not take effect (as the client won’t generally know of any failures). The offset given back for each record will always be set to -1. <code>acks=1</code> This will mean the leader will write the record to its local log but will respond without awaiting full acknowledgement from all followers. In this case should the leader fail immediately after acknowledging the record but before the followers have replicated it then the record will be lost. <code>acks=all</code> This means the leader will wait for the full set of in-sync replicas to acknowledge the record. This guarantees that the record will not be lost as long as at least one in-sync replica remains alive. This is the strongest available guarantee.

	
	all

	false

	false

	window.duration

	all the elements in seen in a sliding window of time over. windowDuration = width of the window; must be a multiple of batching interval

	
	null

	false

	false

	slide.duration

	sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of batching interval

	
	null

	false

	false

KafkaRecordStreamHDFSBurner

No description provided.

Class

com.hurence.logisland.stream.spark.KafkaRecordStreamHDFSBurner

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	kafka.error.topics

	Sets the error topics Kafka topic name

	
	_errors

	false

	false

	kafka.input.topics

	Sets the input Kafka topic name

	
	_raw

	false

	false

	kafka.output.topics

	Sets the output Kafka topic name

	
	_records

	false

	false

	avro.input.schema

	the avro schema definition

	
	null

	false

	false

	avro.output.schema

	the avro schema definition for the output serialization

	
	null

	false

	false

	kafka.input.topics.serializer

	No Description Provided.

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	com.hurence.logisland.serializer.KryoSerializer

	false

	false

	kafka.output.topics.serializer

	No Description Provided.

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	com.hurence.logisland.serializer.KryoSerializer

	false

	false

	kafka.error.topics.serializer

	No Description Provided.

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	com.hurence.logisland.serializer.JsonSerializer

	false

	false

	kafka.topic.autoCreate

	define wether a topic should be created automatically if not already exists

	
	true

	false

	false

	kafka.topic.default.partitions

	if autoCreate is set to true, this will set the number of partition at topic creation time

	
	20

	false

	false

	kafka.topic.default.replicationFactor

	if autoCreate is set to true, this will set the number of replica for each partition at topic creation time

	
	3

	false

	false

	kafka.metadata.broker.list

	a comma separated list of host:port brokers

	
	sandbox:9092

	false

	false

	kafka.zookeeper.quorum

	No Description Provided.

	
	sandbox:2181

	false

	false

	kafka.manual.offset.reset

	What to do when there is no initial offset in Kafka or if the current offset does not exist any more on the server (e.g. because that data has been deleted):

earliest: automatically reset the offset to the earliest offset

latest: automatically reset the offset to the latest offset

none: throw exception to the consumer if no previous offset is found for the consumer’s group

anything else: throw exception to the consumer.

	latest (the offset to the latest offset), earliest (the offset to the earliest offset), none (the latest saved offset)

	earliest

	false

	false

	kafka.batch.size

	measures batch size in total bytes instead of the number of messages. It controls how many bytes of data to collect before sending messages to the Kafka broker. Set this as high as possible, without exceeding available memory. The default value is 16384.

If you increase the size of your buffer, it might never get full.The Producer sends the information eventually, based on other triggers, such as linger time in milliseconds. Although you can impair memory usage by setting the buffer batch size too high, this does not impact latency.

If your producer is sending all the time, you are probably getting the best throughput possible. If the producer is often idle, you might not be writing enough data to warrant the current allocation of resources.

	
	16384

	false

	false

	kafka.linger.ms

	linger.ms sets the maximum time to buffer data in asynchronous mode. For example, a setting of 100 batches 100ms of messages to send at once. This improves throughput, but the buffering adds message delivery latency.

By default, the producer does not wait. It sends the buffer any time data is available.

Instead of sending immediately, you can set linger.ms to 5 and send more messages in one batch. This would reduce the number of requests sent, but would add up to 5 milliseconds of latency to records sent, even if the load on the system does not warrant the delay.

The farther away the broker is from the producer, the more overhead required to send messages. Increase linger.ms for higher latency and higher throughput in your producer.

	
	5

	false

	false

	kafka.acks

	The number of acknowledgments the producer requires the leader to have received before considering a request complete. This controls the durability of records that are sent. The following settings are common: <code>acks=0</code> If set to zero then the producer will not wait for any acknowledgment from the server at all. The record will be immediately added to the socket buffer and considered sent. No guarantee can be made that the server has received the record in this case, and the <code>retries</code> configuration will not take effect (as the client won’t generally know of any failures). The offset given back for each record will always be set to -1. <code>acks=1</code> This will mean the leader will write the record to its local log but will respond without awaiting full acknowledgement from all followers. In this case should the leader fail immediately after acknowledging the record but before the followers have replicated it then the record will be lost. <code>acks=all</code> This means the leader will wait for the full set of in-sync replicas to acknowledge the record. This guarantees that the record will not be lost as long as at least one in-sync replica remains alive. This is the strongest available guarantee.

	
	all

	false

	false

	window.duration

	all the elements in seen in a sliding window of time over. windowDuration = width of the window; must be a multiple of batching interval

	
	null

	false

	false

	slide.duration

	sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of batching interval

	
	null

	false

	false

	output.folder.path

	the location where to put files : file:///tmp/out

	
	null

	false

	false

	output.format

	can be parquet, orc csv

	parquet, txt, json, json

	null

	false

	false

	record.type

	the type of event to filter

	
	null

	false

	false

	num.partitions

	the numbers of physical files on HDFS

	
	4

	false

	false

	exclude.errors

	do we include records with errors ?

	
	true

	false

	false

	date.format

	The format of the date for the partition

	
	yyyy-MM-dd

	false

	false

	input.format

	Used to load data from a raw record_value. Only json supported

	
	
	false

	false

KafkaRecordStreamParallelProcessing

No description provided.

Class

com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	kafka.error.topics

	Sets the error topics Kafka topic name

	
	_errors

	false

	false

	kafka.input.topics

	Sets the input Kafka topic name

	
	_raw

	false

	false

	kafka.output.topics

	Sets the output Kafka topic name

	
	_records

	false

	false

	avro.input.schema

	the avro schema definition

	
	null

	false

	false

	avro.output.schema

	the avro schema definition for the output serialization

	
	null

	false

	false

	kafka.input.topics.serializer

	No Description Provided.

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	com.hurence.logisland.serializer.KryoSerializer

	false

	false

	kafka.output.topics.serializer

	No Description Provided.

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	com.hurence.logisland.serializer.KryoSerializer

	false

	false

	kafka.error.topics.serializer

	No Description Provided.

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	com.hurence.logisland.serializer.JsonSerializer

	false

	false

	kafka.topic.autoCreate

	define wether a topic should be created automatically if not already exists

	
	true

	false

	false

	kafka.topic.default.partitions

	if autoCreate is set to true, this will set the number of partition at topic creation time

	
	20

	false

	false

	kafka.topic.default.replicationFactor

	if autoCreate is set to true, this will set the number of replica for each partition at topic creation time

	
	3

	false

	false

	kafka.metadata.broker.list

	a comma separated list of host:port brokers

	
	sandbox:9092

	false

	false

	kafka.zookeeper.quorum

	No Description Provided.

	
	sandbox:2181

	false

	false

	kafka.manual.offset.reset

	What to do when there is no initial offset in Kafka or if the current offset does not exist any more on the server (e.g. because that data has been deleted):

earliest: automatically reset the offset to the earliest offset

latest: automatically reset the offset to the latest offset

none: throw exception to the consumer if no previous offset is found for the consumer’s group

anything else: throw exception to the consumer.

	latest (the offset to the latest offset), earliest (the offset to the earliest offset), none (the latest saved offset)

	earliest

	false

	false

	kafka.batch.size

	measures batch size in total bytes instead of the number of messages. It controls how many bytes of data to collect before sending messages to the Kafka broker. Set this as high as possible, without exceeding available memory. The default value is 16384.

If you increase the size of your buffer, it might never get full.The Producer sends the information eventually, based on other triggers, such as linger time in milliseconds. Although you can impair memory usage by setting the buffer batch size too high, this does not impact latency.

If your producer is sending all the time, you are probably getting the best throughput possible. If the producer is often idle, you might not be writing enough data to warrant the current allocation of resources.

	
	16384

	false

	false

	kafka.linger.ms

	linger.ms sets the maximum time to buffer data in asynchronous mode. For example, a setting of 100 batches 100ms of messages to send at once. This improves throughput, but the buffering adds message delivery latency.

By default, the producer does not wait. It sends the buffer any time data is available.

Instead of sending immediately, you can set linger.ms to 5 and send more messages in one batch. This would reduce the number of requests sent, but would add up to 5 milliseconds of latency to records sent, even if the load on the system does not warrant the delay.

The farther away the broker is from the producer, the more overhead required to send messages. Increase linger.ms for higher latency and higher throughput in your producer.

	
	5

	false

	false

	kafka.acks

	The number of acknowledgments the producer requires the leader to have received before considering a request complete. This controls the durability of records that are sent. The following settings are common: <code>acks=0</code> If set to zero then the producer will not wait for any acknowledgment from the server at all. The record will be immediately added to the socket buffer and considered sent. No guarantee can be made that the server has received the record in this case, and the <code>retries</code> configuration will not take effect (as the client won’t generally know of any failures). The offset given back for each record will always be set to -1. <code>acks=1</code> This will mean the leader will write the record to its local log but will respond without awaiting full acknowledgement from all followers. In this case should the leader fail immediately after acknowledging the record but before the followers have replicated it then the record will be lost. <code>acks=all</code> This means the leader will wait for the full set of in-sync replicas to acknowledge the record. This guarantees that the record will not be lost as long as at least one in-sync replica remains alive. This is the strongest available guarantee.

	
	all

	false

	false

	window.duration

	all the elements in seen in a sliding window of time over. windowDuration = width of the window; must be a multiple of batching interval

	
	null

	false

	false

	slide.duration

	sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of batching interval

	
	null

	false

	false

KafkaRecordStreamSQLAggregator

This is a stream capable of SQL query interpretations.

Class

com.hurence.logisland.stream.spark.KafkaRecordStreamSQLAggregator

Tags

stream, SQL, query, record

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	kafka.error.topics

	Sets the error topics Kafka topic name

	
	_errors

	false

	false

	kafka.input.topics

	Sets the input Kafka topic name

	
	_raw

	false

	false

	kafka.output.topics

	Sets the output Kafka topic name

	
	_records

	false

	false

	avro.input.schema

	the avro schema definition

	
	null

	false

	false

	avro.output.schema

	the avro schema definition for the output serialization

	
	null

	false

	false

	kafka.input.topics.serializer

	No Description Provided.

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	com.hurence.logisland.serializer.KryoSerializer

	false

	false

	kafka.output.topics.serializer

	No Description Provided.

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	com.hurence.logisland.serializer.KryoSerializer

	false

	false

	kafka.error.topics.serializer

	No Description Provided.

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	com.hurence.logisland.serializer.JsonSerializer

	false

	false

	kafka.topic.autoCreate

	define wether a topic should be created automatically if not already exists

	
	true

	false

	false

	kafka.topic.default.partitions

	if autoCreate is set to true, this will set the number of partition at topic creation time

	
	20

	false

	false

	kafka.topic.default.replicationFactor

	if autoCreate is set to true, this will set the number of replica for each partition at topic creation time

	
	3

	false

	false

	kafka.metadata.broker.list

	a comma separated list of host:port brokers

	
	sandbox:9092

	false

	false

	kafka.zookeeper.quorum

	No Description Provided.

	
	sandbox:2181

	false

	false

	kafka.manual.offset.reset

	What to do when there is no initial offset in Kafka or if the current offset does not exist any more on the server (e.g. because that data has been deleted):

earliest: automatically reset the offset to the earliest offset

latest: automatically reset the offset to the latest offset

none: throw exception to the consumer if no previous offset is found for the consumer’s group

anything else: throw exception to the consumer.

	latest (the offset to the latest offset), earliest (the offset to the earliest offset), none (the latest saved offset)

	earliest

	false

	false

	kafka.batch.size

	measures batch size in total bytes instead of the number of messages. It controls how many bytes of data to collect before sending messages to the Kafka broker. Set this as high as possible, without exceeding available memory. The default value is 16384.

If you increase the size of your buffer, it might never get full.The Producer sends the information eventually, based on other triggers, such as linger time in milliseconds. Although you can impair memory usage by setting the buffer batch size too high, this does not impact latency.

If your producer is sending all the time, you are probably getting the best throughput possible. If the producer is often idle, you might not be writing enough data to warrant the current allocation of resources.

	
	16384

	false

	false

	kafka.linger.ms

	linger.ms sets the maximum time to buffer data in asynchronous mode. For example, a setting of 100 batches 100ms of messages to send at once. This improves throughput, but the buffering adds message delivery latency.

By default, the producer does not wait. It sends the buffer any time data is available.

Instead of sending immediately, you can set linger.ms to 5 and send more messages in one batch. This would reduce the number of requests sent, but would add up to 5 milliseconds of latency to records sent, even if the load on the system does not warrant the delay.

The farther away the broker is from the producer, the more overhead required to send messages. Increase linger.ms for higher latency and higher throughput in your producer.

	
	5

	false

	false

	kafka.acks

	The number of acknowledgments the producer requires the leader to have received before considering a request complete. This controls the durability of records that are sent. The following settings are common: <code>acks=0</code> If set to zero then the producer will not wait for any acknowledgment from the server at all. The record will be immediately added to the socket buffer and considered sent. No guarantee can be made that the server has received the record in this case, and the <code>retries</code> configuration will not take effect (as the client won’t generally know of any failures). The offset given back for each record will always be set to -1. <code>acks=1</code> This will mean the leader will write the record to its local log but will respond without awaiting full acknowledgement from all followers. In this case should the leader fail immediately after acknowledging the record but before the followers have replicated it then the record will be lost. <code>acks=all</code> This means the leader will wait for the full set of in-sync replicas to acknowledge the record. This guarantees that the record will not be lost as long as at least one in-sync replica remains alive. This is the strongest available guarantee.

	
	all

	false

	false

	window.duration

	all the elements in seen in a sliding window of time over. windowDuration = width of the window; must be a multiple of batching interval

	
	null

	false

	false

	slide.duration

	sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of batching interval

	
	null

	false

	false

	max.results.count

	the max number of rows to output. (-1 for no limit)

	
	-1

	false

	false

	sql.query

	The SQL query to execute, please note that the table name must exists in input topics names

	
	null

	false

	false

	output.record.type

	the output type of the record

	
	aggregation

	false

	false

KafkaStreamProcessingEngine

No description provided.

Class

com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	spark.app.name

	Tha application name

	
	logisland

	false

	false

	spark.master

	The url to Spark Master

	
	local[2]

	false

	false

	spark.monitoring.driver.port

	The port for exposing monitoring metrics

	
	null

	false

	false

	spark.yarn.deploy-mode

	The yarn deploy mode

	
	null

	false

	false

	spark.yarn.queue

	The name of the YARN queue

	
	default

	false

	false

	spark.driver.memory

	The memory size for Spark driver

	
	512m

	false

	false

	spark.executor.memory

	The memory size for Spark executors

	
	1g

	false

	false

	spark.driver.cores

	The number of cores for Spark driver

	
	4

	false

	false

	spark.executor.cores

	The number of cores for Spark driver

	
	1

	false

	false

	spark.executor.instances

	The number of instances for Spark app

	
	null

	false

	false

	spark.serializer

	Class to use for serializing objects that will be sent over the network or need to be cached in serialized form

	
	org.apache.spark.serializer.KryoSerializer

	false

	false

	spark.streaming.blockInterval

	Interval at which data received by Spark Streaming receivers is chunked into blocks of data before storing them in Spark. Minimum recommended - 50 ms

	
	350

	false

	false

	spark.streaming.kafka.maxRatePerPartition

	Maximum rate (number of records per second) at which data will be read from each Kafka partition

	
	5000

	false

	false

	spark.streaming.batchDuration

	No Description Provided.

	
	2000

	false

	false

	spark.streaming.backpressure.enabled

	This enables the Spark Streaming to control the receiving rate based on the current batch scheduling delays and processing times so that the system receives only as fast as the system can process.

	
	false

	false

	false

	spark.streaming.unpersist

	Force RDDs generated and persisted by Spark Streaming to be automatically unpersisted from Spark’s memory. The raw input data received by Spark Streaming is also automatically cleared. Setting this to false will allow the raw data and persisted RDDs to be accessible outside the streaming application as they will not be cleared automatically. But it comes at the cost of higher memory usage in Spark.

	
	false

	false

	false

	spark.ui.port

	No Description Provided.

	
	4050

	false

	false

	spark.streaming.timeout

	No Description Provided.

	
	-1

	false

	false

	spark.streaming.kafka.maxRetries

	Maximum rate (number of records per second) at which data will be read from each Kafka partition

	
	3

	false

	false

	spark.streaming.ui.retainedBatches

	How many batches the Spark Streaming UI and status APIs remember before garbage collecting.

	
	200

	false

	false

	spark.streaming.receiver.writeAheadLog.enable

	Enable write ahead logs for receivers. All the input data received through receivers will be saved to write ahead logs that will allow it to be recovered after driver failures.

	
	false

	false

	false

	spark.yarn.maxAppAttempts

	Because Spark driver and Application Master share a single JVM, any error in Spark driver stops our long-running job. Fortunately it is possible to configure maximum number of attempts that will be made to re-run the application. It is reasonable to set higher value than default 2 (derived from YARN cluster property yarn.resourcemanager.am.max-attempts). 4 works quite well, higher value may cause unnecessary restarts even if the reason of the failure is permanent.

	
	4

	false

	false

	spark.yarn.am.attemptFailuresValidityInterval

	If the application runs for days or weeks without restart or redeployment on highly utilized cluster, 4 attempts could be exhausted in few hours. To avoid this situation, the attempt counter should be reset on every hour of so.

	
	1h

	false

	false

	spark.yarn.max.executor.failures

	a maximum number of executor failures before the application fails. By default it is max(2 * num executors, 3), well suited for batch jobs but not for long-running jobs. The property comes with corresponding validity interval which also should be set.8 * num_executors

	
	20

	false

	false

	spark.yarn.executor.failuresValidityInterval

	If the application runs for days or weeks without restart or redeployment on highly utilized cluster, x attempts could be exhausted in few hours. To avoid this situation, the attempt counter should be reset on every hour of so.

	
	1h

	false

	false

	spark.task.maxFailures

	For long-running jobs you could also consider to boost maximum number of task failures before giving up the job. By default tasks will be retried 4 times and then job fails.

	
	8

	false

	false

	spark.memory.fraction

	expresses the size of M as a fraction of the (JVM heap space - 300MB) (default 0.75). The rest of the space (25%) is reserved for user data structures, internal metadata in Spark, and safeguarding against OOM errors in the case of sparse and unusually large records.

	
	0.6

	false

	false

	spark.memory.storageFraction

	expresses the size of R as a fraction of M (default 0.5). R is the storage space within M where cached blocks immune to being evicted by execution.

	
	0.5

	false

	false

	spark.scheduler.mode

	The scheduling mode between jobs submitted to the same SparkContext. Can be set to FAIR to use fair sharing instead of queueing jobs one after another. Useful for multi-user services.

	FAIR (fair sharing), FIFO (queueing jobs one after another)

	FAIR

	false

	false

	spark.properties.file.path

	for using –properties-file option while submitting spark job

	
	null

	false

	false

KafkaStructuredStreamProviderService

No description provided.

Class

com.hurence.logisland.stream.spark.structured.provider.KafkaStructuredStreamProviderService

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	kafka.error.topics

	Sets the error topics Kafka topic name

	
	_errors

	false

	false

	kafka.input.topics

	Sets the input Kafka topic name

	
	_raw

	false

	false

	kafka.output.topics

	Sets the output Kafka topic name

	
	_records

	false

	false

	avro.input.schema

	the avro schema definition

	
	null

	false

	false

	avro.output.schema

	the avro schema definition for the output serialization

	
	null

	false

	false

	kafka.input.topics.serializer

	No Description Provided.

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	com.hurence.logisland.serializer.KryoSerializer

	false

	false

	kafka.output.topics.serializer

	No Description Provided.

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	com.hurence.logisland.serializer.KryoSerializer

	false

	false

	kafka.error.topics.serializer

	No Description Provided.

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	com.hurence.logisland.serializer.JsonSerializer

	false

	false

	kafka.topic.autoCreate

	define wether a topic should be created automatically if not already exists

	
	true

	false

	false

	kafka.topic.default.partitions

	if autoCreate is set to true, this will set the number of partition at topic creation time

	
	20

	false

	false

	kafka.topic.default.replicationFactor

	if autoCreate is set to true, this will set the number of replica for each partition at topic creation time

	
	3

	false

	false

	kafka.metadata.broker.list

	a comma separated list of host:port brokers

	
	sandbox:9092

	false

	false

	kafka.zookeeper.quorum

	No Description Provided.

	
	sandbox:2181

	false

	false

	kafka.manual.offset.reset

	What to do when there is no initial offset in Kafka or if the current offset does not exist any more on the server (e.g. because that data has been deleted):

earliest: automatically reset the offset to the earliest offset

latest: automatically reset the offset to the latest offset

none: throw exception to the consumer if no previous offset is found for the consumer’s group

anything else: throw exception to the consumer.

	latest (the offset to the latest offset), earliest (the offset to the earliest offset), none (the latest saved offset)

	earliest

	false

	false

	kafka.batch.size

	measures batch size in total bytes instead of the number of messages. It controls how many bytes of data to collect before sending messages to the Kafka broker. Set this as high as possible, without exceeding available memory. The default value is 16384.

If you increase the size of your buffer, it might never get full.The Producer sends the information eventually, based on other triggers, such as linger time in milliseconds. Although you can impair memory usage by setting the buffer batch size too high, this does not impact latency.

If your producer is sending all the time, you are probably getting the best throughput possible. If the producer is often idle, you might not be writing enough data to warrant the current allocation of resources.

	
	16384

	false

	false

	kafka.linger.ms

	linger.ms sets the maximum time to buffer data in asynchronous mode. For example, a setting of 100 batches 100ms of messages to send at once. This improves throughput, but the buffering adds message delivery latency.

By default, the producer does not wait. It sends the buffer any time data is available.

Instead of sending immediately, you can set linger.ms to 5 and send more messages in one batch. This would reduce the number of requests sent, but would add up to 5 milliseconds of latency to records sent, even if the load on the system does not warrant the delay.

The farther away the broker is from the producer, the more overhead required to send messages. Increase linger.ms for higher latency and higher throughput in your producer.

	
	5

	false

	false

	kafka.acks

	The number of acknowledgments the producer requires the leader to have received before considering a request complete. This controls the durability of records that are sent. The following settings are common: <code>acks=0</code> If set to zero then the producer will not wait for any acknowledgment from the server at all. The record will be immediately added to the socket buffer and considered sent. No guarantee can be made that the server has received the record in this case, and the <code>retries</code> configuration will not take effect (as the client won’t generally know of any failures). The offset given back for each record will always be set to -1. <code>acks=1</code> This will mean the leader will write the record to its local log but will respond without awaiting full acknowledgement from all followers. In this case should the leader fail immediately after acknowledging the record but before the followers have replicated it then the record will be lost. <code>acks=all</code> This means the leader will wait for the full set of in-sync replicas to acknowledge the record. This guarantees that the record will not be lost as long as at least one in-sync replica remains alive. This is the strongest available guarantee.

	
	all

	false

	false

	window.duration

	all the elements in seen in a sliding window of time over. windowDuration = width of the window; must be a multiple of batching interval

	
	null

	false

	false

	slide.duration

	sliding interval of the window (i.e., the interval after which the new DStream will generate RDDs); must be a multiple of batching interval

	
	null

	false

	false

MQTTStructuredStreamProviderService

No description provided.

Class

com.hurence.logisland.stream.spark.structured.provider.MQTTStructuredStreamProviderService

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	mqtt.broker.url

	brokerUrl A url MqttClient connects to. Set this or path as the url of the Mqtt Server. e.g. tcp://localhost:1883

	
	tcp://localhost:1883

	false

	false

	mqtt.clean.session

	cleanSession Setting it true starts a clean session, removes all checkpointed messages by a previous run of this source. This is set to false by default.

	
	true

	false

	false

	mqtt.client.id

	clientID this client is associated. Provide the same value to recover a stopped client.

	
	null

	false

	false

	mqtt.connection.timeout

	connectionTimeout Sets the connection timeout, a value of 0 is interpreted as wait until client connects. See MqttConnectOptions.setConnectionTimeout for more information

	
	5000

	false

	false

	mqtt.keep.alive

	keepAlive Same as MqttConnectOptions.setKeepAliveInterval.

	
	5000

	false

	false

	mqtt.password

	password Sets the password to use for the connection

	
	null

	false

	false

	mqtt.persistence

	persistence By default it is used for storing incoming messages on disk. If memory is provided as value for this option, then recovery on restart is not supported.

	
	memory

	false

	false

	mqtt.version

	mqttVersion Same as MqttConnectOptions.setMqttVersion

	
	5000

	false

	false

	mqtt.username

	
username Sets the user name to use for the connection to Mqtt Server. Do not set it, if server does not need this. Setting it empty will lead to errors.

	
	null

	false

	false

	mqtt.qos

	
QoS The maximum quality of service to subscribe each topic at.Messages published at a lower quality of service will be received at the published QoS.Messages published at a higher quality of service will be received using the QoS specified on the subscribe

	
	0

	false

	false

	mqtt.topic

	Topic MqttClient subscribes to.

	
	null

	false

	false

RemoteApiStreamProcessingEngine

No description provided.

Class

com.hurence.logisland.engine.spark.RemoteApiStreamProcessingEngine

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	spark.app.name

	Tha application name

	
	logisland

	false

	false

	spark.master

	The url to Spark Master

	
	local[2]

	false

	false

	spark.monitoring.driver.port

	The port for exposing monitoring metrics

	
	null

	false

	false

	spark.yarn.deploy-mode

	The yarn deploy mode

	
	null

	false

	false

	spark.yarn.queue

	The name of the YARN queue

	
	default

	false

	false

	spark.driver.memory

	The memory size for Spark driver

	
	512m

	false

	false

	spark.executor.memory

	The memory size for Spark executors

	
	1g

	false

	false

	spark.driver.cores

	The number of cores for Spark driver

	
	4

	false

	false

	spark.executor.cores

	The number of cores for Spark driver

	
	1

	false

	false

	spark.executor.instances

	The number of instances for Spark app

	
	null

	false

	false

	spark.serializer

	Class to use for serializing objects that will be sent over the network or need to be cached in serialized form

	
	org.apache.spark.serializer.KryoSerializer

	false

	false

	spark.streaming.blockInterval

	Interval at which data received by Spark Streaming receivers is chunked into blocks of data before storing them in Spark. Minimum recommended - 50 ms

	
	350

	false

	false

	spark.streaming.kafka.maxRatePerPartition

	Maximum rate (number of records per second) at which data will be read from each Kafka partition

	
	5000

	false

	false

	spark.streaming.batchDuration

	No Description Provided.

	
	2000

	false

	false

	spark.streaming.backpressure.enabled

	This enables the Spark Streaming to control the receiving rate based on the current batch scheduling delays and processing times so that the system receives only as fast as the system can process.

	
	false

	false

	false

	spark.streaming.unpersist

	Force RDDs generated and persisted by Spark Streaming to be automatically unpersisted from Spark’s memory. The raw input data received by Spark Streaming is also automatically cleared. Setting this to false will allow the raw data and persisted RDDs to be accessible outside the streaming application as they will not be cleared automatically. But it comes at the cost of higher memory usage in Spark.

	
	false

	false

	false

	spark.ui.port

	No Description Provided.

	
	4050

	false

	false

	spark.streaming.timeout

	No Description Provided.

	
	-1

	false

	false

	spark.streaming.kafka.maxRetries

	Maximum rate (number of records per second) at which data will be read from each Kafka partition

	
	3

	false

	false

	spark.streaming.ui.retainedBatches

	How many batches the Spark Streaming UI and status APIs remember before garbage collecting.

	
	200

	false

	false

	spark.streaming.receiver.writeAheadLog.enable

	Enable write ahead logs for receivers. All the input data received through receivers will be saved to write ahead logs that will allow it to be recovered after driver failures.

	
	false

	false

	false

	spark.yarn.maxAppAttempts

	Because Spark driver and Application Master share a single JVM, any error in Spark driver stops our long-running job. Fortunately it is possible to configure maximum number of attempts that will be made to re-run the application. It is reasonable to set higher value than default 2 (derived from YARN cluster property yarn.resourcemanager.am.max-attempts). 4 works quite well, higher value may cause unnecessary restarts even if the reason of the failure is permanent.

	
	4

	false

	false

	spark.yarn.am.attemptFailuresValidityInterval

	If the application runs for days or weeks without restart or redeployment on highly utilized cluster, 4 attempts could be exhausted in few hours. To avoid this situation, the attempt counter should be reset on every hour of so.

	
	1h

	false

	false

	spark.yarn.max.executor.failures

	a maximum number of executor failures before the application fails. By default it is max(2 * num executors, 3), well suited for batch jobs but not for long-running jobs. The property comes with corresponding validity interval which also should be set.8 * num_executors

	
	20

	false

	false

	spark.yarn.executor.failuresValidityInterval

	If the application runs for days or weeks without restart or redeployment on highly utilized cluster, x attempts could be exhausted in few hours. To avoid this situation, the attempt counter should be reset on every hour of so.

	
	1h

	false

	false

	spark.task.maxFailures

	For long-running jobs you could also consider to boost maximum number of task failures before giving up the job. By default tasks will be retried 4 times and then job fails.

	
	8

	false

	false

	spark.memory.fraction

	expresses the size of M as a fraction of the (JVM heap space - 300MB) (default 0.75). The rest of the space (25%) is reserved for user data structures, internal metadata in Spark, and safeguarding against OOM errors in the case of sparse and unusually large records.

	
	0.6

	false

	false

	spark.memory.storageFraction

	expresses the size of R as a fraction of M (default 0.5). R is the storage space within M where cached blocks immune to being evicted by execution.

	
	0.5

	false

	false

	spark.scheduler.mode

	The scheduling mode between jobs submitted to the same SparkContext. Can be set to FAIR to use fair sharing instead of queueing jobs one after another. Useful for multi-user services.

	FAIR (fair sharing), FIFO (queueing jobs one after another)

	FAIR

	false

	false

	spark.properties.file.path

	for using –properties-file option while submitting spark job

	
	null

	false

	false

	remote.api.baseUrl

	The base URL of the remote server providing logisland configuration

	
	null

	false

	false

	remote.api.polling.rate

	Remote api polling rate in milliseconds

	
	null

	false

	false

	remote.api.push.rate

	Remote api configuration push rate in milliseconds

	
	null

	false

	false

	remote.api.timeouts.connect

	Remote api connection timeout in milliseconds

	
	10000

	false

	false

	remote.api.auth.user

	The basic authentication user for the remote api endpoint.

	
	null

	false

	false

	remote.api.auth.password

	The basic authentication password for the remote api endpoint.

	
	null

	false

	false

	remote.api.timeouts.socket

	Remote api default read/write socket timeout in milliseconds

	
	10000

	false

	false

StructuredStream

No description provided.

Class

com.hurence.logisland.stream.spark.structured.StructuredStream

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	read.topics

	the input path for any topic to be read from

	
	null

	false

	false

	read.topics.client.service

	the controller service that gives connection information

	
	null

	false

	false

	read.topics.serializer

	the serializer to use

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes), com.hurence.logisland.serializer.KuraProtobufSerializer (serialize events as Kura protocol buffer)

	none

	false

	false

	read.topics.key.serializer

	The key serializer to use

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.KuraProtobufSerializer (serialize events as Kura protocol buffer), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes)

	none

	false

	false

	write.topics

	the input path for any topic to be written to

	
	null

	false

	false

	write.topics.client.service

	the controller service that gives connection information

	
	null

	false

	false

	write.topics.serializer

	the serializer to use

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes), com.hurence.logisland.serializer.KuraProtobufSerializer (serialize events as Kura protocol buffer)

	none

	false

	false

	write.topics.key.serializer

	The key serializer to use

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes), com.hurence.logisland.serializer.KuraProtobufSerializer (serialize events as Kura protocol buffer)

	none

	false

	false

 Engine-vanilla

Engine-vanilla

Find below the list.

AmqpClientPipelineStream

No description provided.

Class

com.hurence.logisland.engine.vanilla.stream.amqp.AmqpClientPipelineStream

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	connection.host

	Connection host name

	
	null

	false

	false

	connection.port

	Connection port

	
	5672

	false

	false

	link.credits

	Flow control. How many credits for this links. Higher means higher prefetch (prebuffered number of messages

	
	1024

	false

	false

	connection.auth.user

	Connection authenticated user name

	
	null

	false

	false

	connection.auth.password

	Connection authenticated password

	
	null

	false

	false

	connection.auth.tls.cert

	Connection TLS public certificate (PEM file path)

	
	null

	false

	false

	connection.auth.tls.key

	Connection TLS private key (PEM file path)

	
	null

	false

	false

	connection.auth.ca.cert

	Connection TLS CA cert (PEM file path)

	
	null

	false

	false

	read.topic

	The input path for any topic to be read from

	
	
	false

	false

	read.topic.serializer

	The serializer to use

	com.hurence.logisland.serializer.BsonSerializer (serialize events as bson), com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes), com.hurence.logisland.serializer.KuraProtobufSerializer (serialize events as Kura protocol buffer)

	none

	false

	false

	avro.input.schema

	The avro schema definition

	
	null

	false

	false

	write.topic

	The input path for any topic to be written to

	
	
	false

	false

	write.topic.serializer

	The serializer to use

	com.hurence.logisland.serializer.BsonSerializer (serialize events as bson), com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes), com.hurence.logisland.serializer.KuraProtobufSerializer (serialize events as Kura protocol buffer)

	none

	false

	false

	avro.output.schema

	The avro schema definition for the output serialization

	
	null

	false

	false

	container.id

	AMQP container ID

	
	null

	false

	false

	write.topic.content.type

	The content type to set in the output message

	
	null

	false

	false

	connection.reconnect.backoff

	Reconnection delay linear backoff

	
	2.0

	false

	false

	connection.reconnect.initial.delay

	Initial reconnection delay in milliseconds

	
	1000

	false

	false

	connection.reconnect.max.delay

	Maximum reconnection delay in milliseconds

	
	30000

	false

	false

Extra informations

No additional information is provided

KafkaStreamsPipelineStream

No description provided.

Class

com.hurence.logisland.engine.vanilla.stream.kafka.KafkaStreamsPipelineStream

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	bootstrap.servers

	List of kafka nodes to connect to

	
	null

	false

	false

	read.topics

	The input path for any topic to be read from

	
	
	false

	false

	avro.input.schema

	The avro schema definition

	
	null

	false

	false

	avro.output.schema

	The avro schema definition for the output serialization

	
	null

	false

	false

	kafka.manual.offset.reset

	What to do when there is no initial offset in Kafka or if the current offset does not exist any more on the server (e.g. because that data has been deleted):

earliest: automatically reset the offset to the earliest offset

latest: automatically reset the offset to the latest offset

none: throw exception to the consumer if no previous offset is found for the consumer’s group

anything else: throw exception to the consumer.

	latest (the offset to the latest offset), earliest (the offset to the earliest offset), none (the latest saved offset)

	earliest

	false

	false

	read.topics.serializer

	The serializer to use

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes), com.hurence.logisland.serializer.KuraProtobufSerializer (serialize events as Kura protocol buffer)

	none

	false

	false

	write.topics

	The input path for any topic to be written to

	
	
	false

	false

	write.topics.serializer

	The serializer to use

	com.hurence.logisland.serializer.KryoSerializer (serialize events as binary blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.ExtendedJsonSerializer (serialize events as json blocs supporting nested objects/arrays), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.StringSerializer (serialize events as string), none (send events as bytes), com.hurence.logisland.serializer.KuraProtobufSerializer (serialize events as Kura protocol buffer)

	none

	false

	false

Extra informations

No additional information is provided

PlainJavaEngine

No description provided.

Class

com.hurence.logisland.engine.vanilla.PlainJavaEngine

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	jvm.heap.min

	Minimum memory the JVM should allocate for its heap

	
	null

	false

	false

	jvm.heap.max

	Maximum memory the JVM should allocate for its heap

	
	null

	false

	false

Extra informations

No additional information is provided

 Common-processors

Common-processors

Find below the list.

AddFields

Add one or more field to records

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.AddFields

Tags

record, fields, Add

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	conflict.resolution.policy

	What to do when a field with the same name already exists ?

	overwrite_existing (if field already exist), keep_only_old_field (keep only old field)

	keep_only_old_field

	false

	false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

dynamic-properties

	Name

	Value

	Description

	Allowable Values

	Default Value

	EL

	Name of the field to add

	Value of the field to add

	Add a field to the record with the specified value. Expression language can be used.You can not add a field that end with ‘.type’ as this suffix is used to specify the type of fields to add

	
	null

	true

	Name of the field to add with the suffix ‘.field.type’

	Type of the field to add

	Add a field to the record with the specified type. These properties are only used if a correspondant property without the suffix ‘.field.type’ is already defined. If this property is not defined, default type for adding fields is String.You can only use Logisland predefined type fields.

	NULL, STRING, INT, LONG, ARRAY, FLOAT, DOUBLE, BYTES, RECORD, MAP, ENUM, BOOLEAN, UNION, DATETIME

	STRING

	false

	Name of the field to add with the suffix ‘.field.name’

	Name of the field to add using expression language

	Add a field to the record with the specified name (which is evaluated using expression language). These properties are only used if a correspondant property without the suffix ‘.field.name’ is already defined. If this property is not defined, the name of the field to add is the key of the first dynamic property (which is the main and only required dynamic property).

	
	null

	true

Extra informations

Add one or more field with constant value or dynamic value using the expression-language.Some examples of settings:

newStringField: bonjour
newIntField: 14
newIntField.field.type: INT

Would add those fields in record :

Field{name='newStringField', type='STRING', value='bonjour'}
Field{name='newIntField', type='INT', value=14}

Here a second example using expression language, once for the value, once for the key. Note that you can use for both.We suppose that our record got already those fields :

Field{name='field1', type='STRING', value='bonjour'}
Field{name='field2', type='INT', value=14}

This settings :
.. code:

newStringField: ${field1 + "-" + field2}
fieldToCalulateKey: 555
fieldToCalulateKey.field.name: ${"_" + field1 + "-"}

Would add those fields in record :

Field{name='newStringField', type='STRING', value='bonjour-14'}
Field{name='_bonjour-', type='STRING', value='555'}

As you probably notice, you can not add fields with name ending by either ‘.field.name’ either ‘.field.type’ because they are suffix are used to sort dynamic properties. But if you really want to do this a workaround is to specify the name of the field oui expression language, for example this settings would work:

fieldWithReservedSuffix: bonjour
fieldWithReservedSuffix.field.type: INT
fieldWithReservedSuffix.field.type: myfield.endind.with.reserved.suffix.field.type

ApplyRegexp

This processor is used to create a new set of fields from one field (using regexp).

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.ApplyRegexp

Tags

parser, regex, log, record

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	conflict.resolution.policy

	What to do when a field with the same name already exists ?

	overwrite_existing (if field already exist), keep_only_old_field (keep only old field)

	keep_only_old_field

	false

	false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

dynamic-properties

	Name

	Value

	Description

	Allowable Values

	Default Value

	EL

	alternative regex & mapping

	another regex that could match

	This processor is used to create a new set of fields from one field (using regexp).

	
	null

	true

Extra informations

This processor is used to create a new set of fields from one field (using regexp).

See Also:

com.hurence.logisland.processor.ApplyRegexp

BulkPut

Indexes the content of a Record in a Datastore using bulk processor

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.datastore.BulkPut

Tags

datastore, record, put, bulk

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values, and whether a property supports the Expression Language .

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	datastore.client.service

	The instance of the Controller Service to use for accessing datastore.

	
	null

	false

	false

	default.collection

	The name of the collection/index/table to insert into

	
	null

	false

	true

	timebased.collection

	do we add a date suffix

	no (no date added to default index), today (today’s date added to default index), yesterday (yesterday’s date added to default index)

	no

	false

	false

	date.format

	simple date format for date suffix. default : yyyy.MM.dd

	
	yyyy.MM.dd

	false

	false

	collection.field

	the name of the event field containing es index name => will override index value if set

	
	null

	false

	true

Extra informations

Indexes the content of a Record in a Datastore using bulk processor.

CheckAlerts

Add one or more records representing alerts. Using a datastore.

Module

com.hurence.logisland:logisland-processor-common:1.1.1

Class

com.hurence.logisland.processor.alerting.CheckAlerts

Tags

record, alerting, thresholds, opc, tag

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	max.cpu.time

	maximum CPU time in milliseconds allowed for script execution.

	
	100

	false

	false

	max.memory

	maximum memory in Bytes which JS executor thread can allocate

	
	51200

	false

	false

	allow.no.brace

	Force, to check if all blocks are enclosed with curly braces “”{}”“.

Explanation: all loops (for, do-while, while, and if-else, and functions

should use braces, because poison_pill() function will be inserted after

each open brace ""{"", to ensure interruption checking. Otherwise simple

code like:

 while(true) while(true) {

 // do nothing

 }

or even:

 while(true)

cause unbreakable loop, which force this sandbox to use {@link Thread#stop()}

which make JVM unstable.

Properly writen code (even in bad intention) like:

 while(true) { while(true) {

 // do nothing

 }}

will be changed into:

 while(true) {poison_pill();

 while(true) {poison_pill();

 // do nothing

 }

 }

which finish nicely when interrupted.

For legacy code, this check can be turned off, but with no guarantee, the

JS thread will gracefully finish when interrupted.

 Other-processors

Other-processors

Find below the list.

ParseUserAgent

The user-agent processor allows to decompose User-Agent value from an HTTP header into several attributes of interest. There is no standard format for User-Agent strings, hence it is not easily possible to use regexp to handle them. This processor rely on the YAUAA library [https://github.com/nielsbasjes/yauaa] to do the heavy work.

Module

com.hurence.logisland:logisland-processor-useragent:1.1.1

Class

com.hurence.logisland.processor.useragent.ParseUserAgent

Tags

User-Agent, clickstream, DMP

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	debug

	Enable debug.

	
	false

	false

	false

	cache.enabled

	Enable caching. Caching to avoid to redo the same computation for many identical User-Agent strings.

	
	true

	false

	false

	cache.size

	Set the size of the cache.

	
	1000

	false

	false

	useragent.field

	Must contain the name of the field that contains the User-Agent value in the incoming record.

	
	null

	false

	false

	useragent.keep

	Defines if the field that contained the User-Agent must be kept or not in the resulting records.

	
	true

	false

	false

	confidence.enabled

	Enable confidence reporting. Each field will report a confidence attribute with a value comprised between 0 and 10000.

	
	false

	false

	false

	ambiguity.enabled

	Enable ambiguity reporting. Reports a count of ambiguities.

	
	false

	false

	false

	fields

	Defines the fields to be returned.

	
	DeviceClass, DeviceName, DeviceBrand, DeviceCpu, DeviceFirmwareVersion, DeviceVersion, OperatingSystemClass, OperatingSystemName, OperatingSystemVersion, OperatingSystemNameVersion, OperatingSystemVersionBuild, LayoutEngineClass, LayoutEngineName, LayoutEngineVersion, LayoutEngineVersionMajor, LayoutEngineNameVersion, LayoutEngineNameVersionMajor, LayoutEngineBuild, AgentClass, AgentName, AgentVersion, AgentVersionMajor, AgentNameVersion, AgentNameVersionMajor, AgentBuild, AgentLanguage, AgentLanguageCode, AgentInformationEmail, AgentInformationUrl, AgentSecurity, AgentUuid, FacebookCarrier, FacebookDeviceClass, FacebookDeviceName, FacebookDeviceVersion, FacebookFBOP, FacebookFBSS, FacebookOperatingSystemName, FacebookOperatingSystemVersion, Anonymized, HackerAttackVector, HackerToolkit, KoboAffiliate, KoboPlatformId, IECompatibilityVersion, IECompatibilityVersionMajor, IECompatibilityNameVersion, IECompatibilityNameVersionMajor, __SyntaxError__, Carrier, GSAInstallationID, WebviewAppName, WebviewAppNameVersionMajor, WebviewAppVersion, WebviewAppVersionMajor

	false

	false

Extra informations

The user-agent processor allows to decompose User-Agent value from an HTTP header into several attributes of interest. There is no standard format for User-Agent strings, hence it is not easily possible to use regexp to handle them. This processor rely on the YAUAA library [https://github.com/nielsbasjes/yauaa] to do the heavy work.

BulkAddElasticsearch

Indexes the content of a Record in Elasticsearch using elasticsearch’s bulk processor

Module

com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

Class

com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch

Tags

elasticsearch

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values, and whether a property supports the Expression Language .

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	elasticsearch.client.service

	The instance of the Controller Service to use for accessing Elasticsearch.

	
	null

	false

	false

	default.index

	The name of the index to insert into

	
	null

	false

	true

	default.type

	The type of this document (used by Elasticsearch for indexing and searching)

	
	null

	false

	true

	timebased.index

	do we add a date suffix

	no (no date added to default index), today (today’s date added to default index), yesterday (yesterday’s date added to default index)

	no

	false

	false

	es.index.field

	the name of the event field containing es index name => will override index value if set

	
	null

	false

	false

	es.type.field

	the name of the event field containing es doc type => will override type value if set

	
	null

	false

	false

Extra informations

Indexes the content of a Record in Elasticsearch using elasticsearch’s bulk processor.

ConsolidateSession

The ConsolidateSession processor is the Logisland entry point to get and process events from the Web Analytics.As an example here is an incoming event from the Web Analytics:

“fields”: [{ “name”: “timestamp”, “type”: “long” },{ “name”: “remoteHost”, “type”: “string”},{ “name”: “record_type”, “type”: [“null”, “string”], “default”: null },{ “name”: “record_id”, “type”: [“null”, “string”], “default”: null },{ “name”: “location”, “type”: [“null”, “string”], “default”: null },{ “name”: “hitType”, “type”: [“null”, “string”], “default”: null },{ “name”: “eventCategory”, “type”: [“null”, “string”], “default”: null },{ “name”: “eventAction”, “type”: [“null”, “string”], “default”: null },{ “name”: “eventLabel”, “type”: [“null”, “string”], “default”: null },{ “name”: “localPath”, “type”: [“null”, “string”], “default”: null },{ “name”: “q”, “type”: [“null”, “string”], “default”: null },{ “name”: “n”, “type”: [“null”, “int”], “default”: null },{ “name”: “referer”, “type”: [“null”, “string”], “default”: null },{ “name”: “viewportPixelWidth”, “type”: [“null”, “int”], “default”: null },{ “name”: “viewportPixelHeight”, “type”: [“null”, “int”], “default”: null },{ “name”: “screenPixelWidth”, “type”: [“null”, “int”], “default”: null },{ “name”: “screenPixelHeight”, “type”: [“null”, “int”], “default”: null },{ “name”: “partyId”, “type”: [“null”, “string”], “default”: null },{ “name”: “sessionId”, “type”: [“null”, “string”], “default”: null },{ “name”: “pageViewId”, “type”: [“null”, “string”], “default”: null },{ “name”: “is_newSession”, “type”: [“null”, “boolean”],”default”: null },{ “name”: “userAgentString”, “type”: [“null”, “string”], “default”: null },{ “name”: “pageType”, “type”: [“null”, “string”], “default”: null },{ “name”: “UserId”, “type”: [“null”, “string”], “default”: null },{ “name”: “B2Bunit”, “type”: [“null”, “string”], “default”: null },{ “name”: “pointOfService”, “type”: [“null”, “string”], “default”: null },{ “name”: “companyID”, “type”: [“null”, “string”], “default”: null },{ “name”: “GroupCode”, “type”: [“null”, “string”], “default”: null },{ “name”: “userRoles”, “type”: [“null”, “string”], “default”: null },{ “name”: “is_PunchOut”, “type”: [“null”, “string”], “default”: null }]The ConsolidateSession processor groups the records by sessions and compute the duration between now and the last received event. If the distance from the last event is beyond a given threshold (by default 30mn), then the session is considered closed.The ConsolidateSession is building an aggregated session object for each active session.This aggregated object includes: - The actual session duration. - A boolean representing wether the session is considered active or closed. Note: it is possible to ressurect a session if for instance an event arrives after a session has been marked closed. - User related infos: userId, B2Bunit code, groupCode, userRoles, companyId - First visited page: URL - Last visited page: URL The properties to configure the processor are: - sessionid.field: Property name containing the session identifier (default: sessionId). - timestamp.field: Property name containing the timestamp of the event (default: timestamp). - session.timeout: Timeframe of inactivity (in seconds) after which a session is considered closed (default: 30mn). - visitedpage.field: Property name containing the page visited by the customer (default: location). - fields.to.return: List of fields to return in the aggregated object. (default: N/A)

Module

com.hurence.logisland:logisland-processor-web-analytics:1.1.1

Class

com.hurence.logisland.processor.webAnalytics.ConsolidateSession

Tags

analytics, web, session

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	debug

	Enable debug. If enabled, the original JSON string is embedded in the record_value field of the record.

	
	null

	false

	false

	session.timeout

	session timeout in sec

	
	1800

	false

	false

	sessionid.field

	the name of the field containing the session id => will override default value if set

	
	sessionId

	false

	false

	timestamp.field

	the name of the field containing the timestamp => will override default value if set

	
	h2kTimestamp

	false

	false

	visitedpage.field

	the name of the field containing the visited page => will override default value if set

	
	location

	false

	false

	userid.field

	the name of the field containing the userId => will override default value if set

	
	userId

	false

	false

	fields.to.return

	the list of fields to return

	
	null

	false

	false

	firstVisitedPage.out.field

	the name of the field containing the first visited page => will override default value if set

	
	firstVisitedPage

	false

	false

	lastVisitedPage.out.field

	the name of the field containing the last visited page => will override default value if set

	
	lastVisitedPage

	false

	false

	isSessionActive.out.field

	the name of the field stating whether the session is active or not => will override default value if set

	
	is_sessionActive

	false

	false

	sessionDuration.out.field

	the name of the field containing the session duration => will override default value if set

	
	sessionDuration

	false

	false

	eventsCounter.out.field

	the name of the field containing the session duration => will override default value if set

	
	eventsCounter

	false

	false

	firstEventDateTime.out.field

	the name of the field containing the date of the first event => will override default value if set

	
	firstEventDateTime

	false

	false

	lastEventDateTime.out.field

	the name of the field containing the date of the last event => will override default value if set

	
	lastEventDateTime

	false

	false

	sessionInactivityDuration.out.field

	the name of the field containing the session inactivity duration => will override default value if set

	
	sessionInactivityDuration

	false

	false

Extra informations

The ConsolidateSession processor is the Logisland entry point to get and process events from the Web Analytics.As an example here is an incoming event from the Web Analytics:

“fields”: [{ “name”: “timestamp”, “type”: “long” },{ “name”: “remoteHost”, “type”: “string”},{ “name”: “record_type”, “type”: [“null”, “string”], “default”: null },{ “name”: “record_id”, “type”: [“null”, “string”], “default”: null },{ “name”: “location”, “type”: [“null”, “string”], “default”: null },{ “name”: “hitType”, “type”: [“null”, “string”], “default”: null },{ “name”: “eventCategory”, “type”: [“null”, “string”], “default”: null },{ “name”: “eventAction”, “type”: [“null”, “string”], “default”: null },{ “name”: “eventLabel”, “type”: [“null”, “string”], “default”: null },{ “name”: “localPath”, “type”: [“null”, “string”], “default”: null },{ “name”: “q”, “type”: [“null”, “string”], “default”: null },{ “name”: “n”, “type”: [“null”, “int”], “default”: null },{ “name”: “referer”, “type”: [“null”, “string”], “default”: null },{ “name”: “viewportPixelWidth”, “type”: [“null”, “int”], “default”: null },{ “name”: “viewportPixelHeight”, “type”: [“null”, “int”], “default”: null },{ “name”: “screenPixelWidth”, “type”: [“null”, “int”], “default”: null },{ “name”: “screenPixelHeight”, “type”: [“null”, “int”], “default”: null },{ “name”: “partyId”, “type”: [“null”, “string”], “default”: null },{ “name”: “sessionId”, “type”: [“null”, “string”], “default”: null },{ “name”: “pageViewId”, “type”: [“null”, “string”], “default”: null },{ “name”: “is_newSession”, “type”: [“null”, “boolean”],”default”: null },{ “name”: “userAgentString”, “type”: [“null”, “string”], “default”: null },{ “name”: “pageType”, “type”: [“null”, “string”], “default”: null },{ “name”: “UserId”, “type”: [“null”, “string”], “default”: null },{ “name”: “B2Bunit”, “type”: [“null”, “string”], “default”: null },{ “name”: “pointOfService”, “type”: [“null”, “string”], “default”: null },{ “name”: “companyID”, “type”: [“null”, “string”], “default”: null },{ “name”: “GroupCode”, “type”: [“null”, “string”], “default”: null },{ “name”: “userRoles”, “type”: [“null”, “string”], “default”: null },{ “name”: “is_PunchOut”, “type”: [“null”, “string”], “default”: null }]The ConsolidateSession processor groups the records by sessions and compute the duration between now and the last received event. If the distance from the last event is beyond a given threshold (by default 30mn), then the session is considered closed.The ConsolidateSession is building an aggregated session object for each active session.This aggregated object includes: - The actual session duration. - A boolean representing wether the session is considered active or closed. Note: it is possible to ressurect a session if for instance an event arrives after a session has been marked closed. - User related infos: userId, B2Bunit code, groupCode, userRoles, companyId - First visited page: URL - Last visited page: URL The properties to configure the processor are: - sessionid.field: Property name containing the session identifier (default: sessionId). - timestamp.field: Property name containing the timestamp of the event (default: timestamp). - session.timeout: Timeframe of inactivity (in seconds) after which a session is considered closed (default: 30mn). - visitedpage.field: Property name containing the page visited by the customer (default: location). - fields.to.return: List of fields to return in the aggregated object. (default: N/A)

DetectOutliers

Outlier Analysis: A Hybrid Approach

In order to function at scale, a two-phase approach is taken

For every data point

	Detect outlier candidates using a robust estimator of variability (e.g. median absolute deviation) that uses distributional sketching (e.g. Q-trees)

	Gather a biased sample (biased by recency)

	Extremely deterministic in space and cheap in computation

For every outlier candidate

	Use traditional, more computationally complex approaches to outlier analysis (e.g. Robust PCA) on the biased sample

	Expensive computationally, but run infrequently

This becomes a data filter which can be attached to a timeseries data stream within a distributed computational framework (i.e. Storm, Spark, Flink, NiFi) to detect outliers.

Module

com.hurence.logisland:logisland-processor-outlier-detection:1.1.1

Class

com.hurence.logisland.processor.DetectOutliers

Tags

analytic, outlier, record, iot, timeseries

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	value.field

	the numeric field to get the value

	
	record_value

	false

	false

	time.field

	the numeric field to get the value

	
	record_time

	false

	false

	output.record.type

	the output type of the record

	
	alert_match

	false

	false

	rotation.policy.type

	…

	by_amount, by_time, never

	by_amount

	false

	false

	rotation.policy.amount

	…

	
	100

	false

	false

	rotation.policy.unit

	…

	milliseconds, seconds, hours, days, months, years, points

	points

	false

	false

	chunking.policy.type

	…

	by_amount, by_time, never

	by_amount

	false

	false

	chunking.policy.amount

	…

	
	100

	false

	false

	chunking.policy.unit

	…

	milliseconds, seconds, hours, days, months, years, points

	points

	false

	false

	sketchy.outlier.algorithm

	…

	SKETCHY_MOVING_MAD

	SKETCHY_MOVING_MAD

	false

	false

	batch.outlier.algorithm

	…

	RAD

	RAD

	false

	false

	global.statistics.min

	minimum value

	
	null

	false

	false

	global.statistics.max

	maximum value

	
	null

	false

	false

	global.statistics.mean

	mean value

	
	null

	false

	false

	global.statistics.stddev

	standard deviation value

	
	null

	false

	false

	zscore.cutoffs.normal

	zscoreCutoffs level for normal outlier

	
	0.000000000000001

	false

	false

	zscore.cutoffs.moderate

	zscoreCutoffs level for moderate outlier

	
	1.5

	false

	false

	zscore.cutoffs.severe

	zscoreCutoffs level for severe outlier

	
	10.0

	false

	false

	zscore.cutoffs.notEnoughData

	zscoreCutoffs level for notEnoughData outlier

	
	100

	false

	false

	smooth

	do smoothing ?

	
	false

	false

	false

	decay

	the decay

	
	0.1

	false

	false

	min.amount.to.predict

	minAmountToPredict

	
	100

	false

	false

	min_zscore_percentile

	minZscorePercentile

	
	50.0

	false

	false

	reservoir_size

	the size of points reservoir

	
	100

	false

	false

	rpca.force.diff

	No Description Provided.

	
	null

	false

	false

	rpca.lpenalty

	No Description Provided.

	
	null

	false

	false

	rpca.min.records

	No Description Provided.

	
	null

	false

	false

	rpca.spenalty

	No Description Provided.

	
	null

	false

	false

	rpca.threshold

	No Description Provided.

	
	null

	false

	false

Extra informations

Outlier Analysis: A Hybrid Approach

In order to function at scale, a two-phase approach is taken

For every data point

	Detect outlier candidates using a robust estimator of variability (e.g. median absolute deviation) that uses distributional sketching (e.g. Q-trees)

	Gather a biased sample (biased by recency)

	Extremely deterministic in space and cheap in computation

For every outlier candidate

	Use traditional, more computationally complex approaches to outlier analysis (e.g. Robust PCA) on the biased sample

	Expensive computationally, but run infrequently

This becomes a data filter which can be attached to a timeseries data stream within a distributed computational framework (i.e. Storm, Spark, Flink, NiFi) to detect outliers.

EnrichRecordsElasticsearch

Enrich input records with content indexed in elasticsearch using multiget queries.
Each incoming record must be possibly enriched with information stored in elasticsearch.
Each outcoming record holds at least the input record plus potentially one or more fields coming from of one elasticsearch document.

Module

com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

Class

com.hurence.logisland.processor.elasticsearch.EnrichRecordsElasticsearch

Tags

elasticsearch

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values, and whether a property supports the Expression Language .

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	elasticsearch.client.service

	The instance of the Controller Service to use for accessing Elasticsearch.

	
	null

	false

	false

	record.key

	The name of field in the input record containing the document id to use in ES multiget query

	
	null

	false

	true

	es.index

	The name of the ES index to use in multiget query.

	
	null

	false

	true

	es.type

	The name of the ES type to use in multiget query.

	
	default

	false

	true

	es.includes.field

	The name of the ES fields to include in the record.

	
	
	

	false

	true

	es.excludes.field

	The name of the ES fields to exclude.

	
	N/A

	false

	false

Extra informations

Enrich input records with content indexed in elasticsearch using multiget queries.
Each incoming record must be possibly enriched with information stored in elasticsearch.
Each outcoming record holds at least the input record plus potentially one or more fields coming from of one elasticsearch document.

EvaluateXPath

Evaluates one or more XPaths against the content of a record. The results of those XPaths are assigned to new attributes in the records, depending on configuration of the Processor. XPaths are entered by adding user-defined properties; the name of the property maps to the Attribute Name into which the result will be placed. The value of the property must be a valid XPath expression. If the expression matches nothing, no attributes is added.

Module

com.hurence.logisland:logisland-processor-xml:1.1.1

Class

com.hurence.logisland.processor.xml.EvaluateXPath

Tags

XML, evaluate, XPath

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	source

	Indicates the attribute containing the xml data to evaluate xpath against.

	
	null

	false

	false

	validate_dtd

	Specifies whether or not the XML content should be validated against the DTD.

	true, false

	true

	false

	false

	conflict.resolution.policy

	What to do when a field with the same name already exists ?

	overwrite_existing (if field already exist), keep_only_old_field (keep only old field)

	keep_only_old_field

	false

	false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

dynamic-properties

	Name

	Value

	Description

	Allowable Values

	Default Value

	EL

	An attribute

	An XPath expression

	
the attribute is set to the result of the XPath Expression.

	
	null

	false

Extra informations

Evaluates one or more XPaths against the content of a record. The results of those XPaths are assigned to new attributes in the records, depending on configuration of the Processor. XPaths are entered by adding user-defined properties; the name of the property maps to the Attribute Name into which the result will be placed. The value of the property must be a valid XPath expression. If the expression matches nothing, no attributes is added.

ExcelExtract

Consumes a Microsoft Excel document and converts each worksheet’s line to a structured record. The processor is assuming to receive raw excel file as input record.

Module

com.hurence.logisland:logisland-processor-excel:1.1.1

Class

com.hurence.logisland.processor.excel.ExcelExtract

Tags

excel, processor, poi

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	sheets

	Comma separated list of Excel document sheet names that should be extracted from the excel document. If this property is left blank then all of the sheets will be extracted from the Excel document. You can specify regular expressions. Any sheets not specified in this value will be ignored.

	
	
	false

	false

	skip.columns

	Comma delimited list of column numbers to skip. Use the columns number and not the letter designation. Use this to skip over columns anywhere in your worksheet that you don’t want extracted as part of the record.

	
	
	false

	false

	field.names

	The comma separated list representing the names of columns of extracted cells. Order matters! You should use either field.names either field.row.header but not both together.

	
	null

	false

	false

	skip.rows

	The row number of the first row to start processing.Use this to skip over rows of data at the top of your worksheet that are not part of the dataset.Empty rows of data anywhere in the spreadsheet will always be skipped, no matter what this value is set to.

	
	0

	false

	false

	record.type

	Default type of record

	
	excel_record

	false

	false

	field.row.header

	If set, field names mapping will be extracted from the specified row number. You should use either field.names either field.row.header but not both together.

	
	null

	false

	false

Extra informations

Consumes a Microsoft Excel document and converts each worksheet’s line to a structured record. The processor is assuming to receive raw excel file as input record.

FetchHBaseRow

Fetches a row from an HBase table. The Destination property controls whether the cells are added as flow file attributes, or the row is written to the flow file content as JSON. This processor may be used to fetch a fixed row on a interval by specifying the table and row id directly in the processor, or it may be used to dynamically fetch rows by referencing the table and row id from incoming flow files.

Module

com.hurence.logisland:logisland-processor-hbase:1.1.1

Class

com.hurence.logisland.processor.hbase.FetchHBaseRow

Tags

hbase, scan, fetch, get, enrich

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values, and whether a property supports the Expression Language .

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	hbase.client.service

	The instance of the Controller Service to use for accessing HBase.

	
	null

	false

	false

	table.name.field

	The field containing the name of the HBase Table to fetch from.

	
	null

	false

	true

	row.identifier.field

	The field containing the identifier of the row to fetch.

	
	null

	false

	true

	columns.field

	The field containing an optional comma-separated list of “”<colFamily>:<colQualifier>”” pairs to fetch. To return all columns for a given family, leave off the qualifier such as “”<colFamily1>,<colFamily2>”“.

	
	null

	false

	true

	record.serializer

	the serializer needed to i/o the record in the HBase row

	com.hurence.logisland.serializer.KryoSerializer (serialize events as json blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), none (send events as bytes)

	com.hurence.logisland.serializer.KryoSerializer

	false

	false

	record.schema

	the avro schema definition for the Avro serialization

	
	null

	false

	false

	table.name.default

	The table to use if table name field is not set

	
	null

	false

	false

Extra informations

Fetches a row from an HBase table. The Destination property controls whether the cells are added as flow file attributes, or the row is written to the flow file content as JSON. This processor may be used to fetch a fixed row on a interval by specifying the table and row id directly in the processor, or it may be used to dynamically fetch rows by referencing the table and row id from incoming flow files.

IncrementalWebSession

	This processor creates and updates web-sessions based on incoming web-events. Note that both web-sessions and web-events are stored in elasticsearch.

	Firstly, web-events are grouped by their session identifier and processed in chronological order.
Then each web-session associated to each group is retrieved from elasticsearch.
In case none exists yet then a new web session is created based on the first web event.
The following fields of the newly created web session are set based on the associated web event: session identifier, first timestamp, first visited page. Secondly, once created, or retrieved, the web session is updated by the remaining web-events.
Updates have impacts on fields of the web session such as event counter, last visited page, session duration, …
Before updates are actually applied, checks are performed to detect rules that would trigger the creation of a new session:

the duration between the web session and the web event must not exceed the specified time-out,
the web session and the web event must have timestamps within the same day (at midnight a new web session is created),
source of traffic (campaign, …) must be the same on the web session and the web event.

When a breaking rule is detected, a new web session is created with a new session identifier where as remaining web-events still have the original session identifier. The new session identifier is the original session suffixed with the character ‘#’ followed with an incremented counter. This new session identifier is also set on the remaining web-events.
Finally when all web events were applied, all web events -potentially modified with a new session identifier- are save in elasticsearch. And web sessions are passed to the next processor.

WebSession information are:
- first and last visited page
- first and last timestamp of processed event
- total number of processed events
- the userId
- a boolean denoting if the web-session is still active or not
- an integer denoting the duration of the web-sessions
- optional fields that may be retrieved from the processed events

Module

com.hurence.logisland:logisland-processor-web-analytics:1.1.1

Class

com.hurence.logisland.processor.webAnalytics.IncrementalWebSession

Tags

analytics, web, session

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	debug

	Enable debug. If enabled, debug information are logged.

	
	false

	false

	false

	es.session.index.field

	Name of the field in the record defining the ES index containing the web session documents.

	
	null

	false

	false

	es.session.type.name

	Name of the ES type of web session documents.

	
	null

	false

	false

	es.event.index.prefix

	Prefix of the index containing the web event documents.

	
	null

	false

	false

	es.event.type.name

	Name of the ES type of web event documents.

	
	null

	false

	false

	es.mapping.event.to.session.index.name

	Name of the ES index containing the mapping of web session documents.

	
	null

	false

	false

	sessionid.field

	the name of the field containing the session id => will override default value if set

	
	sessionId

	false

	false

	timestamp.field

	the name of the field containing the timestamp => will override default value if set

	
	h2kTimestamp

	false

	false

	visitedpage.field

	the name of the field containing the visited page => will override default value if set

	
	location

	false

	false

	userid.field

	the name of the field containing the userId => will override default value if set

	
	userId

	false

	false

	fields.to.return

	the list of fields to return

	
	null

	false

	false

	firstVisitedPage.out.field

	the name of the field containing the first visited page => will override default value if set

	
	firstVisitedPage

	false

	false

	lastVisitedPage.out.field

	the name of the field containing the last visited page => will override default value if set

	
	lastVisitedPage

	false

	false

	isSessionActive.out.field

	the name of the field stating whether the session is active or not => will override default value if set

	
	is_sessionActive

	false

	false

	sessionDuration.out.field

	the name of the field containing the session duration => will override default value if set

	
	sessionDuration

	false

	false

	sessionInactivityDuration.out.field

	the name of the field containing the session inactivity duration => will override default value if set

	
	sessionInactivityDuration

	false

	false

	session.timeout

	session timeout in sec

	
	1800

	false

	false

	eventsCounter.out.field

	the name of the field containing the session duration => will override default value if set

	
	eventsCounter

	false

	false

	firstEventDateTime.out.field

	the name of the field containing the date of the first event => will override default value if set

	
	firstEventDateTime

	false

	false

	lastEventDateTime.out.field

	the name of the field containing the date of the last event => will override default value if set

	
	lastEventDateTime

	false

	false

	newSessionReason.out.field

	the name of the field containing the reason why a new session was created => will override default value if set

	
	reasonForNewSession

	false

	false

	transactionIds.out.field

	the name of the field containing all transactionIds => will override default value if set

	
	transactionIds

	false

	false

	source_of_traffic.suffix

	Prefix for the source of the traffic related fields

	
	source_of_traffic

	false

	false

	elasticsearch.client.service

	The instance of the Controller Service to use for accessing Elasticsearch.

	
	null

	false

	false

Extra informations

	This processor creates and updates web-sessions based on incoming web-events. Note that both web-sessions and web-events are stored in elasticsearch.

	Firstly, web-events are grouped by their session identifier and processed in chronological order.
Then each web-session associated to each group is retrieved from elasticsearch.
In case none exists yet then a new web session is created based on the first web event.
The following fields of the newly created web session are set based on the associated web event: session identifier, first timestamp, first visited page. Secondly, once created, or retrieved, the web session is updated by the remaining web-events.
Updates have impacts on fields of the web session such as event counter, last visited page, session duration, …
Before updates are actually applied, checks are performed to detect rules that would trigger the creation of a new session:

the duration between the web session and the web event must not exceed the specified time-out,
the web session and the web event must have timestamps within the same day (at midnight a new web session is created),
source of traffic (campaign, …) must be the same on the web session and the web event.

When a breaking rule is detected, a new web session is created with a new session identifier where as remaining web-events still have the original session identifier. The new session identifier is the original session suffixed with the character ‘#’ followed with an incremented counter. This new session identifier is also set on the remaining web-events.
Finally when all web events were applied, all web events -potentially modified with a new session identifier- are save in elasticsearch. And web sessions are passed to the next processor.

WebSession information are:
- first and last visited page
- first and last timestamp of processed event
- total number of processed events
- the userId
- a boolean denoting if the web-session is still active or not
- an integer denoting the duration of the web-sessions
- optional fields that may be retrieved from the processed events

IpToFqdn

Translates an IP address into a FQDN (Fully Qualified Domain Name). An input field from the record has the IP as value. An new field is created and its value is the FQDN matching the IP address. The resolution mechanism is based on the underlying operating system. The resolution request may take some time, specially if the IP address cannot be translated into a FQDN. For these reasons this processor relies on the logisland cache service so that once a resolution occurs or not, the result is put into the cache. That way, the real request for the same IP is not re-triggered during a certain period of time, until the cache entry expires. This timeout is configurable but by default a request for the same IP is not triggered before 24 hours to let the time to the underlying DNS system to be potentially updated.

Module

com.hurence.logisland:logisland-processor-enrichment:1.1.1

Class

com.hurence.logisland.processor.enrichment.IpToFqdn

Tags

dns, ip, fqdn, domain, address, fqhn, reverse, resolution, enrich

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	ip.address.field

	The name of the field containing the ip address to use.

	
	null

	false

	false

	fqdn.field

	The field that will contain the full qualified domain name corresponding to the ip address.

	
	null

	false

	false

	overwrite.fqdn.field

	If the field should be overwritten when it already exists.

	
	false

	false

	false

	cache.service

	The name of the cache service to use.

	
	null

	false

	false

	cache.max.time

	The amount of time, in seconds, for which a cached FQDN value is valid in the cache service. After this delay, the next new request to translate the same IP into FQDN will trigger a new reverse DNS request and the result will overwrite the entry in the cache. This allows two things: if the IP was not resolved into a FQDN, this will get a chance to obtain a FQDN if the DNS system has been updated, if the IP is resolved into a FQDN, this will allow to be more accurate if the DNS system has been updated. A value of 0 seconds disables this expiration mechanism. The default value is 84600 seconds, which corresponds to new requests triggered every day if a record with the same IP passes every day in the processor.

	
	84600

	false

	false

	resolution.timeout

	The amount of time, in milliseconds, to wait at most for the resolution to occur. This avoids to block the stream for too much time. Default value is 1000ms. If the delay expires and no resolution could occur before, the FQDN field is not created. A special value of 0 disables the logisland timeout and the resolution request may last for many seconds if the IP cannot be translated into a FQDN by the underlying operating system. In any case, whether the timeout occurs in logisland of in the operating system, the fact that a timeout occurs is kept in the cache system so that a resolution request for the same IP will not occur before the cache entry expires.

	
	1000

	false

	false

	debug

	If true, some additional debug fields are added. If the FQDN field is named X, a debug field named X_os_resolution_time_ms contains the resolution time in ms (using the operating system, not the cache). This field is added whether the resolution occurs or time is out. A debug field named X_os_resolution_timeout contains a boolean value to indicate if the timeout occurred. Finally, a debug field named X_from_cache contains a boolean value to indicate the origin of the FQDN field. The default value for this property is false (debug is disabled.

	
	false

	false

	false

Extra informations

Translates an IP address into a FQDN (Fully Qualified Domain Name). An input field from the record has the IP as value. An new field is created and its value is the FQDN matching the IP address. The resolution mechanism is based on the underlying operating system. The resolution request may take some time, specially if the IP address cannot be translated into a FQDN. For these reasons this processor relies on the logisland cache service so that once a resolution occurs or not, the result is put into the cache. That way, the real request for the same IP is not re-triggered during a certain period of time, until the cache entry expires. This timeout is configurable but by default a request for the same IP is not triggered before 24 hours to let the time to the underlying DNS system to be potentially updated.

IpToGeo

Looks up geolocation information for an IP address. The attribute that contains the IP address to lookup must be provided in the ip.address.field property. By default, the geo information are put in a hierarchical structure. That is, if the name of the IP field is ‘X’, then the the geo attributes added by enrichment are added under a father field named X_geo. “_geo” is the default hierarchical suffix that may be changed with the geo.hierarchical.suffix property. If one wants to put the geo fields at the same level as the IP field, then the geo.hierarchical property should be set to false and then the geo attributes are created at the same level as him with the naming pattern X_geo_<geo_field>. “_geo_” is the default flat suffix but this may be changed with the geo.flat.suffix property. The IpToGeo processor requires a reference to an Ip to Geo service. This must be defined in the iptogeo.service property. The added geo fields are dependant on the underlying Ip to Geo service. The geo.fields property must contain the list of geo fields that should be created if data is available for the IP to resolve. This property defaults to “*” which means to add every available fields. If one only wants a subset of the fields, one must define a comma separated list of fields as a value for the geo.fields property. The list of the available geo fields is in the description of the geo.fields property.

Module

com.hurence.logisland:logisland-processor-enrichment:1.1.1

Class

com.hurence.logisland.processor.enrichment.IpToGeo

Tags

geo, enrich, ip

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	ip.address.field

	The name of the field containing the ip address to use.

	
	null

	false

	false

	iptogeo.service

	The reference to the IP to Geo service to use.

	
	null

	false

	false

	geo.fields

	Comma separated list of geo information fields to add to the record. Defaults to ‘*’, which means to include all available fields. If a list of fields is specified and the data is not available, the geo field is not created. The geo fields are dependant on the underlying defined Ip to Geo service. The currently only supported type of Ip to Geo service is the Maxmind Ip to Geo service. This means that the currently supported list of geo fields is the following:continent: the identified continent for this IP address. continent_code: the identified continent code for this IP address. city: the identified city for this IP address. latitude: the identified latitude for this IP address. longitude: the identified longitude for this IP address. location: the identified location for this IP address, defined as Geo-point expressed as a string with the format: ‘latitude,longitude’. accuracy_radius: the approximate accuracy radius, in kilometers, around the latitude and longitude for the location. time_zone: the identified time zone for this IP address. subdivision_N: the identified subdivision for this IP address. N is a one-up number at the end of the attribute name, starting with 0. subdivision_isocode_N: the iso code matching the identified subdivision_N. country: the identified country for this IP address. country_isocode: the iso code for the identified country for this IP address. postalcode: the identified postal code for this IP address. lookup_micros: the number of microseconds that the geo lookup took. The Ip to Geo service must have the lookup_micros property enabled in order to have this field available.

	
	
	

	false

	false

	geo.hierarchical

	Should the additional geo information fields be added under a hierarchical father field or not.

	
	true

	false

	false

	geo.hierarchical.suffix

	Suffix to use for the field holding geo information. If geo.hierarchical is true, then use this suffix appended to the IP field name to define the father field name. This may be used for instance to distinguish between geo fields with various locales using many Ip to Geo service instances.

	
	_geo

	false

	false

	geo.flat.suffix

	Suffix to use for geo information fields when they are flat. If geo.hierarchical is false, then use this suffix appended to the IP field name but before the geo field name. This may be used for instance to distinguish between geo fields with various locales using many Ip to Geo service instances.

	
	geo

	false

	false

	cache.service

	The name of the cache service to use.

	
	null

	false

	false

	debug

	If true, an additional debug field is added. If the geo info fields prefix is X, a debug field named X_from_cache contains a boolean value to indicate the origin of the geo fields. The default value for this property is false (debug is disabled).

	
	false

	false

	false

Extra informations

Looks up geolocation information for an IP address. The attribute that contains the IP address to lookup must be provided in the ip.address.field property. By default, the geo information are put in a hierarchical structure. That is, if the name of the IP field is ‘X’, then the the geo attributes added by enrichment are added under a father field named X_geo. “_geo” is the default hierarchical suffix that may be changed with the geo.hierarchical.suffix property. If one wants to put the geo fields at the same level as the IP field, then the geo.hierarchical property should be set to false and then the geo attributes are created at the same level as him with the naming pattern X_geo_<geo_field>. “_geo_” is the default flat suffix but this may be changed with the geo.flat.suffix property. The IpToGeo processor requires a reference to an Ip to Geo service. This must be defined in the iptogeo.service property. The added geo fields are dependant on the underlying Ip to Geo service. The geo.fields property must contain the list of geo fields that should be created if data is available for the IP to resolve. This property defaults to “*” which means to add every available fields. If one only wants a subset of the fields, one must define a comma separated list of fields as a value for the geo.fields property. The list of the available geo fields is in the description of the geo.fields property.

MatchIP

IP address Query matching (using `Luwak <http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/>)`_

You can use this processor to handle custom events matching IP address (CIDR)
The record sent from a matching an IP address record is tagged appropriately.

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide [https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description] for supported operations

Warning

don’t forget to set numeric fields property to handle correctly numeric ranges queries

Module

com.hurence.logisland:logisland-processor-querymatcher:1.1.1

Class

com.hurence.logisland.processor.MatchIP

Tags

analytic, percolator, record, record, query, lucene

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	numeric.fields

	a comma separated string of numeric field to be matched

	
	null

	false

	false

	output.record.type

	the output type of the record

	
	alert_match

	false

	false

	record.type.updatePolicy

	Record type update policy

	
	overwrite

	false

	false

	policy.onmatch

	the policy applied to match events: ‘first’ (default value) match events are tagged with the name and value of the first query that matched;’all’ match events are tagged with all names and values of the queries that matched.

	
	first

	false

	false

	policy.onmiss

	the policy applied to miss events: ‘discard’ (default value) drop events that did not match any query;’forward’ include also events that did not match any query.

	
	discard

	false

	false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

dynamic-properties

	Name

	Value

	Description

	Allowable Values

	Default Value

	EL

	query

	some Lucene query

	generate a new record when this query is matched

	
	null

	true

Extra informations

IP address Query matching (using `Luwak <http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/>)`_

You can use this processor to handle custom events matching IP address (CIDR)
The record sent from a matching an IP address record is tagged appropriately.

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide [https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description] for supported operations

Warning

don’t forget to set numeric fields property to handle correctly numeric ranges queries

MatchQuery

Query matching based on Luwak [http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/]

you can use this processor to handle custom events defined by lucene queries
a new record is added to output each time a registered query is matched

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide [https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description] for supported operations

Warning

don’t forget to set numeric fields property to handle correctly numeric ranges queries

Module

com.hurence.logisland:logisland-processor-querymatcher:1.1.1

Class

com.hurence.logisland.processor.MatchQuery

Tags

analytic, percolator, record, record, query, lucene

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	numeric.fields

	a comma separated string of numeric field to be matched

	
	null

	false

	false

	output.record.type

	the output type of the record

	
	alert_match

	false

	false

	record.type.updatePolicy

	Record type update policy

	
	overwrite

	false

	false

	policy.onmatch

	the policy applied to match events: ‘first’ (default value) match events are tagged with the name and value of the first query that matched;’all’ match events are tagged with all names and values of the queries that matched.

	
	first

	false

	false

	policy.onmiss

	the policy applied to miss events: ‘discard’ (default value) drop events that did not match any query;’forward’ include also events that did not match any query.

	
	discard

	false

	false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

dynamic-properties

	Name

	Value

	Description

	Allowable Values

	Default Value

	EL

	query

	some Lucene query

	generate a new record when this query is matched

	
	null

	true

Extra informations

Query matching based on Luwak [http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/]

you can use this processor to handle custom events defined by lucene queries
a new record is added to output each time a registered query is matched

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide [https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description] for supported operations

Warning

don’t forget to set numeric fields property to handle correctly numeric ranges queries.

MultiGetElasticsearch

Retrieves a content indexed in elasticsearch using elasticsearch multiget queries.
Each incoming record contains information regarding the elasticsearch multiget query that will be performed. This information is stored in record fields whose names are configured in the plugin properties (see below) :

	index (String) : name of the elasticsearch index on which the multiget query will be performed. This field is mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.

	type (String) : name of the elasticsearch type on which the multiget query will be performed. This field is not mandatory.

	ids (String) : comma separated list of document ids to fetch. This field is mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.

	includes (String) : comma separated list of patterns to filter in (include) fields to retrieve. Supports wildcards. This field is not mandatory.

	excludes (String) : comma separated list of patterns to filter out (exclude) fields to retrieve. Supports wildcards. This field is not mandatory.

Each outcoming record holds data of one elasticsearch retrieved document. This data is stored in these fields :

	index (same field name as the incoming record) : name of the elasticsearch index.

	type (same field name as the incoming record) : name of the elasticsearch type.

	id (same field name as the incoming record) : retrieved document id.

	a list of String fields containing :

	field name : the retrieved field name

	field value : the retrieved field value

Module

com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

Class

com.hurence.logisland.processor.elasticsearch.MultiGetElasticsearch

Tags

elasticsearch

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	elasticsearch.client.service

	The instance of the Controller Service to use for accessing Elasticsearch.

	
	null

	false

	false

	es.index.field

	the name of the incoming records field containing es index name to use in multiget query.

	
	null

	false

	false

	es.type.field

	the name of the incoming records field containing es type name to use in multiget query

	
	null

	false

	false

	es.ids.field

	the name of the incoming records field containing es document Ids to use in multiget query

	
	null

	false

	false

	es.includes.field

	the name of the incoming records field containing es includes to use in multiget query

	
	null

	false

	false

	es.excludes.field

	the name of the incoming records field containing es excludes to use in multiget query

	
	null

	false

	false

Extra informations

Retrieves a content indexed in elasticsearch using elasticsearch multiget queries.
Each incoming record contains information regarding the elasticsearch multiget query that will be performed. This information is stored in record fields whose names are configured in the plugin properties (see below) :

	index (String) : name of the elasticsearch index on which the multiget query will be performed. This field is mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.

	type (String) : name of the elasticsearch type on which the multiget query will be performed. This field is not mandatory.

	ids (String) : comma separated list of document ids to fetch. This field is mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.

	includes (String) : comma separated list of patterns to filter in (include) fields to retrieve. Supports wildcards. This field is not mandatory.

	excludes (String) : comma separated list of patterns to filter out (exclude) fields to retrieve. Supports wildcards. This field is not mandatory.

Each outcoming record holds data of one elasticsearch retrieved document. This data is stored in these fields :

	index (same field name as the incoming record) : name of the elasticsearch index.

	type (same field name as the incoming record) : name of the elasticsearch type.

	id (same field name as the incoming record) : retrieved document id.

	a list of String fields containing :

	field name : the retrieved field name

	field value : the retrieved field value

ParseBroEvent

The ParseBroEvent processor is the Logisland entry point to get and process Bro [https://www.bro.org] events. The Bro-Kafka plugin [https://github.com/bro/bro-plugins/tree/master/kafka] should be used and configured in order to have Bro events sent to Kafka. See the Bro/Logisland tutorial [http://logisland.readthedocs.io/en/latest/tutorials/indexing-bro-events.html] for an example of usage for this processor. The ParseBroEvent processor does some minor pre-processing on incoming Bro events from the Bro-Kafka plugin to adapt them to Logisland.

Basically the events coming from the Bro-Kafka plugin are JSON documents with a first level field indicating the type of the event. The ParseBroEvent processor takes the incoming JSON document, sets the event type in a record_type field and sets the original sub-fields of the JSON event as first level fields in the record. Also any dot in a field name is transformed into an underscore. Thus, for instance, the field id.orig_h becomes id_orig_h. The next processors in the stream can then process the Bro events generated by this ParseBroEvent processor.

As an example here is an incoming event from Bro:

{

“conn”: {

“id.resp_p”: 9092,

“resp_pkts”: 0,

“resp_ip_bytes”: 0,

“local_orig”: true,

“orig_ip_bytes”: 0,

“orig_pkts”: 0,

“missed_bytes”: 0,

“history”: “Cc”,

“tunnel_parents”: [],

“id.orig_p”: 56762,

“local_resp”: true,

“uid”: “Ct3Ms01I3Yc6pmMZx7”,

“conn_state”: “OTH”,

“id.orig_h”: “172.17.0.2”,

“proto”: “tcp”,

“id.resp_h”: “172.17.0.3”,

“ts”: 1487596886.953917

}

}

It gets processed and transformed into the following Logisland record by the ParseBroEvent processor:

“@timestamp”: “2017-02-20T13:36:32Z”

“record_id”: “6361f80a-c5c9-4a16-9045-4bb51736333d”

“record_time”: 1487597792782

“record_type”: “conn”

“id_resp_p”: 9092

“resp_pkts”: 0

“resp_ip_bytes”: 0

“local_orig”: true

“orig_ip_bytes”: 0

“orig_pkts”: 0

“missed_bytes”: 0

“history”: “Cc”

“tunnel_parents”: []

“id_orig_p”: 56762

“local_resp”: true

“uid”: “Ct3Ms01I3Yc6pmMZx7”

“conn_state”: “OTH”

“id_orig_h”: “172.17.0.2”

“proto”: “tcp”

“id_resp_h”: “172.17.0.3”

“ts”: 1487596886.953917

Module

com.hurence.logisland:logisland-processor-cyber-security:1.1.1

Class

com.hurence.logisland.processor.bro.ParseBroEvent

Tags

bro, security, IDS, NIDS

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	debug

	Enable debug. If enabled, the original JSON string is embedded in the record_value field of the record.

	
	false

	false

	false

Extra informations

The ParseBroEvent processor is the Logisland entry point to get and process Bro [https://www.bro.org] events. The Bro-Kafka plugin [https://github.com/bro/bro-plugins/tree/master/kafka] should be used and configured in order to have Bro events sent to Kafka. See the Bro/Logisland tutorial [http://logisland.readthedocs.io/en/latest/tutorials/indexing-bro-events.html] for an example of usage for this processor. The ParseBroEvent processor does some minor pre-processing on incoming Bro events from the Bro-Kafka plugin to adapt them to Logisland.

Basically the events coming from the Bro-Kafka plugin are JSON documents with a first level field indicating the type of the event. The ParseBroEvent processor takes the incoming JSON document, sets the event type in a record_type field and sets the original sub-fields of the JSON event as first level fields in the record. Also any dot in a field name is transformed into an underscore. Thus, for instance, the field id.orig_h becomes id_orig_h. The next processors in the stream can then process the Bro events generated by this ParseBroEvent processor.

As an example here is an incoming event from Bro:

{

“conn”: {

“id.resp_p”: 9092,

“resp_pkts”: 0,

“resp_ip_bytes”: 0,

“local_orig”: true,

“orig_ip_bytes”: 0,

“orig_pkts”: 0,

“missed_bytes”: 0,

“history”: “Cc”,

“tunnel_parents”: [],

“id.orig_p”: 56762,

“local_resp”: true,

“uid”: “Ct3Ms01I3Yc6pmMZx7”,

“conn_state”: “OTH”,

“id.orig_h”: “172.17.0.2”,

“proto”: “tcp”,

“id.resp_h”: “172.17.0.3”,

“ts”: 1487596886.953917

}

}

It gets processed and transformed into the following Logisland record by the ParseBroEvent processor:

“@timestamp”: “2017-02-20T13:36:32Z”

“record_id”: “6361f80a-c5c9-4a16-9045-4bb51736333d”

“record_time”: 1487597792782

“record_type”: “conn”

“id_resp_p”: 9092

“resp_pkts”: 0

“resp_ip_bytes”: 0

“local_orig”: true

“orig_ip_bytes”: 0

“orig_pkts”: 0

“missed_bytes”: 0

“history”: “Cc”

“tunnel_parents”: []

“id_orig_p”: 56762

“local_resp”: true

“uid”: “Ct3Ms01I3Yc6pmMZx7”

“conn_state”: “OTH”

“id_orig_h”: “172.17.0.2”

“proto”: “tcp”

“id_resp_h”: “172.17.0.3”

“ts”: 1487596886.953917

ParseGitlabLog

The Gitlab logs processor is the Logisland entry point to get and process Gitlab [https://www.gitlab.com] logs. This allows for instance to monitor activities in your Gitlab server. The expected input of this processor are records from the production_json.log log file of Gitlab which contains JSON records. You can for instance use the kafkacat [https://github.com/edenhill/kafkacat] command to inject those logs into kafka and thus Logisland.

Module

com.hurence.logisland:logisland-processor-common-logs:1.1.1

Class

com.hurence.logisland.processor.commonlogs.gitlab.ParseGitlabLog

Tags

logs, gitlab

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	debug

	Enable debug. If enabled, the original JSON string is embedded in the record_value field of the record.

	
	false

	false

	false

Extra informations

The Gitlab logs processor is the Logisland entry point to get and process Gitlab [https://www.gitlab.com] logs. This allows for instance to monitor activities in your Gitlab server. The expected input of this processor are records from the production_json.log log file of Gitlab which contains JSON records. You can for instance use the kafkacat [https://github.com/edenhill/kafkacat] command to inject those logs into kafka and thus Logisland.

ParseNetflowEvent

The Netflow V5 [http://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/netflow/nfwhite.html] processor is the Logisland entry point to process Netflow (V5) events. NetFlow is a feature introduced on Cisco routers that provides the ability to collect IP network traffic.We can distinguish 2 components:

	Flow exporter: aggregates packets into flows and exports flow records (binary format) towards one or more flow collectors

	Flow collector: responsible for reception, storage and pre-processing of flow data received from a flow exporter

The collected data are then available for analysis purpose (intrusion detection, traffic analysis…)
Netflow are sent to kafka in order to be processed by logisland.
In the tutorial we will simulate Netflow traffic using nfgen [https://github.com/pazdera/NetFlow-Exporter-Simulator]. this traffic will be sent to port 2055. The we rely on nifi to listen of that port for incoming netflow (V5) traffic and send them to a kafka topic. The Netflow processor could thus treat these events and generate corresponding logisland records. The following processors in the stream can then process the Netflow records generated by this processor.

Module

com.hurence.logisland:logisland-processor-cyber-security:1.1.1

Class

com.hurence.logisland.processor.netflow.ParseNetflowEvent

Tags

netflow, security

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	debug

	Enable debug. If enabled, the original JSON string is embedded in the record_value field of the record.

	
	false

	false

	false

	output.record.type

	the output type of the record

	
	netflowevent

	false

	false

	enrich.record

	Enrich data. If enabledthe netflow record is enriched with inferred data

	
	false

	false

	false

Extra informations

The Netflow V5 [http://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/netflow/nfwhite.html] processor is the Logisland entry point to process Netflow (V5) events. NetFlow is a feature introduced on Cisco routers that provides the ability to collect IP network traffic.We can distinguish 2 components:

	Flow exporter: aggregates packets into flows and exports flow records (binary format) towards one or more flow collectors

	Flow collector: responsible for reception, storage and pre-processing of flow data received from a flow exporter

The collected data are then available for analysis purpose (intrusion detection, traffic analysis…)
Netflow are sent to kafka in order to be processed by logisland.
In the tutorial we will simulate Netflow traffic using nfgen [https://github.com/pazdera/NetFlow-Exporter-Simulator]. this traffic will be sent to port 2055. The we rely on nifi to listen of that port for incoming netflow (V5) traffic and send them to a kafka topic. The Netflow processor could thus treat these events and generate corresponding logisland records. The following processors in the stream can then process the Netflow records generated by this processor.

ParseNetworkPacket

The ParseNetworkPacket processor is the LogIsland entry point to parse network packets captured either off-the-wire (stream mode) or in pcap format (batch mode). In batch mode, the processor decodes the bytes of the incoming pcap record, where a Global header followed by a sequence of [packet header, packet data] pairs are stored. Then, each incoming pcap event is parsed into n packet records. The fields of packet headers are then extracted and made available in dedicated record fields. See the Capturing Network packets tutorial [http://logisland.readthedocs.io/en/latest/tutorials/indexing-network-packets.html] for an example of usage of this processor.

Module

com.hurence.logisland:logisland-processor-cyber-security:1.1.1

Class

com.hurence.logisland.processor.networkpacket.ParseNetworkPacket

Tags

PCap, security, IDS, NIDS

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	debug

	Enable debug.

	
	false

	false

	false

	flow.mode

	Flow Mode. Indicate whether packets are provided in batch mode (via pcap files) or in stream mode (without headers). Allowed values are batch and stream.

	batch, stream

	null

	false

	false

Extra informations

No additional information is provided

PutHBaseCell

Adds the Contents of a Record to HBase as the value of a single cell

Module

com.hurence.logisland:logisland-processor-hbase:1.1.1

Class

com.hurence.logisland.processor.hbase.PutHBaseCell

Tags

hadoop, hbase

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values, and whether a property supports the Expression Language .

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	hbase.client.service

	The instance of the Controller Service to use for accessing HBase.

	
	null

	false

	false

	table.name.field

	The field containing the name of the HBase Table to put data into

	
	null

	false

	true

	row.identifier.field

	Specifies field containing the Row ID to use when inserting data into HBase

	
	null

	false

	true

	row.identifier.encoding.strategy

	Specifies the data type of Row ID used when inserting data into HBase. The default behavior is to convert the row id to a UTF-8 byte array. Choosing Binary will convert a binary formatted string to the correct byte[] representation. The Binary option should be used if you are using Binary row keys in HBase

	String (Stores the value of row id as a UTF-8 String.), Binary (Stores the value of the rows id as a binary byte array. It expects that the row id is a binary formatted string.)

	String

	false

	false

	column.family.field

	The field containing the Column Family to use when inserting data into HBase

	
	null

	false

	true

	column.qualifier.field

	The field containing the Column Qualifier to use when inserting data into HBase

	
	null

	false

	true

	batch.size

	The maximum number of Records to process in a single execution. The Records will be grouped by table, and a single Put per table will be performed.

	
	25

	false

	false

	record.schema

	the avro schema definition for the Avro serialization

	
	null

	false

	false

	record.serializer

	the serializer needed to i/o the record in the HBase row

	com.hurence.logisland.serializer.KryoSerializer (serialize events as json blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), none (send events as bytes)

	com.hurence.logisland.serializer.KryoSerializer

	false

	false

	table.name.default

	The table table to use if table name field is not set

	
	null

	false

	false

	column.family.default

	The column family to use if column family field is not set

	
	null

	false

	false

	column.qualifier.default

	The column qualifier to use if column qualifier field is not set

	
	null

	false

	false

Extra informations

Adds the Contents of a Record to HBase as the value of a single cell.

RunPython

!!!! WARNING !!!!

The RunPython processor is currently an experimental feature : it is delivered as is, with the current set of features and is subject to modifications in API or anything else in further logisland releases without warnings. There is no tutorial yet. If you want to play with this processor, use the python-processing.yml example and send the apache logs of the index apache logs tutorial. The debug stream processor at the end of the stream should output events in stderr file of the executors from the spark console.

This processor allows to implement and run a processor written in python. This can be done in 2 ways. Either directly defining the process method code in the script.code.process configuration property or poiting to an external python module script file in the script.path configuration property. Directly defining methods is called the inline mode whereas using a script file is called the file mode. Both ways are mutually exclusive. Whether using the inline of file mode, your python code may depend on some python dependencies. If the set of python dependencies already delivered with the Logisland framework is not sufficient, you can use the dependencies.path configuration property to give their location. Currently only the nltk python library is delivered with Logisland.

Module

com.hurence.logisland:logisland-processor-scripting:1.1.1

Class

com.hurence.logisland.processor.scripting.python.RunPython

Tags

scripting, python

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	script.code.imports

	For inline mode only. This is the python code that should hold the import statements if required.

	
	null

	false

	false

	script.code.init

	The python code to be called when the processor is initialized. This is the python equivalent of the init method code for a java processor. This is not mandatory but can only be used if script.code.process is defined (inline mode).

	
	null

	false

	false

	script.code.process

	The python code to be called to process the records. This is the pyhton equivalent of the process method code for a java processor. For inline mode, this is the only minimum required configuration property. Using this property, you may also optionally define the script.code.init and script.code.imports properties.

	
	null

	false

	false

	script.path

	The path to the user’s python processor script. Use this property for file mode. Your python code must be in a python file with the following constraints: let’s say your pyhton script is named MyProcessor.py. Then MyProcessor.py is a module file that must contain a class named MyProcessor which must inherits from the Logisland delivered class named AbstractProcessor. You can then define your code in the process method and in the other traditional methods (init…) as you would do in java in a class inheriting from the AbstractProcessor java class.

	
	null

	false

	false

	dependencies.path

	The path to the additional dependencies for the user’s python code, whether using inline or file mode. This is optional as your code may not have additional dependencies. If you defined script.path (so using file mode) and if dependencies.path is not defined, Logisland will scan a potential directory named dependencies in the same directory where the script file resides and if it exists, any python code located there will be loaded as dependency as needed.

	
	null

	false

	false

	logisland.dependencies.path

	The path to the directory containing the python dependencies shipped with logisland. You should not have to tune this parameter.

	
	null

	false

	false

Extra informations

!!!! WARNING !!!!

The RunPython processor is currently an experimental feature : it is delivered as is, with the current set of features and is subject to modifications in API or anything else in further logisland releases without warnings. There is no tutorial yet. If you want to play with this processor, use the python-processing.yml example and send the apache logs of the index apache logs tutorial. The debug stream processor at the end of the stream should output events in stderr file of the executors from the spark console.

This processor allows to implement and run a processor written in python. This can be done in 2 ways. Either directly defining the process method code in the script.code.process configuration property or poiting to an external python module script file in the script.path configuration property. Directly defining methods is called the inline mode whereas using a script file is called the file mode. Both ways are mutually exclusive. Whether using the inline of file mode, your python code may depend on some python dependencies. If the set of python dependencies already delivered with the Logisland framework is not sufficient, you can use the dependencies.path configuration property to give their location. Currently only the nltk python library is delivered with Logisland.

SampleRecords

Query matching based on Luwak [http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/]

you can use this processor to handle custom events defined by lucene queries
a new record is added to output each time a registered query is matched

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide [https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description] for supported operations

Warning

don’t forget to set numeric fields property to handle correctly numeric ranges queries

Module

com.hurence.logisland:logisland-processor-sampling:1.1.1

Class

com.hurence.logisland.processor.SampleRecords

Tags

analytic, sampler, record, iot, timeseries

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	record.value.field

	the name of the numeric field to sample

	
	record_value

	false

	false

	record.time.field

	the name of the time field to sample

	
	record_time

	false

	false

	sampling.algorithm

	the implementation of the algorithm

	none, lttb, average, first_item, min_max, mode_median

	null

	false

	false

	sampling.parameter

	the parmater of the algorithm

	
	null

	false

	false

Extra informations

Query matching based on Luwak [http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/]

you can use this processor to handle custom events defined by lucene queries
a new record is added to output each time a registered query is matched

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide [https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description] for supported operations

Warning

don’t forget to set numeric fields property to handle correctly numeric ranges queries

URLDecoder

Decode one or more field containing an URL with possibly special chars encoded
…

Module

com.hurence.logisland:logisland-processor-web-analytics:1.1.1

Class

com.hurence.logisland.processor.webAnalytics.URLDecoder

Tags

record, fields, Decode

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	decode.fields

	List of fields (URL) to decode

	
	null

	false

	false

	charset

	Charset to use to decode the URL

	
	UTF-8

	false

	false

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

dynamic-properties

	Name

	Value

	Description

	Allowable Values

	Default Value

	EL

	fields to decode

	a default value

	Decode one or more fields from the record

	
	null

	false

Extra informations

Decode one or more field containing an URL with possibly special chars encoded.

setSourceOfTraffic

Compute the source of traffic of a web session. Users arrive at a website or application through a variety of sources,
including advertising/paying campaigns, search engines, social networks, referring sites or direct access.
When analysing user experience on a webshop, it is crucial to collect, process, and report the campaign and traffic-source data.
To compute the source of traffic of a web session, the user has to provide the utm_* related properties if available
i-e: utm_source.field, utm_medium.field, utm_campaign.field, utm_content.field, utm_term.field)
, the referer (referer.field property) and the first visited page of the session (first.visited.page.field property).
By default the source of traffic information are placed in a flat structure (specified by the source_of_traffic.suffix property
with a default value of source_of_traffic). To work properly the setSourceOfTraffic processor needs to have access to an
Elasticsearch index containing a list of the most popular search engines and social networks. The ES index (specified by the es.index property) should be structured such that the _id of an ES document MUST be the name of the domain. If the domain is a search engine, the related ES doc MUST have a boolean field (default being search_engine) specified by the property es.search_engine.field with a value set to true. If the domain is a social network , the related ES doc MUST have a boolean field (default being social_network) specified by the property es.social_network.field with a value set to true.

Module

com.hurence.logisland:logisland-processor-web-analytics:1.1.1

Class

com.hurence.logisland.processor.webAnalytics.setSourceOfTraffic

Tags

session, traffic, source, web, analytics

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	referer.field

	Name of the field containing the referer value in the session

	
	referer

	false

	false

	first.visited.page.field

	Name of the field containing the first visited page in the session

	
	firstVisitedPage

	false

	false

	utm_source.field

	Name of the field containing the utm_source value in the session

	
	utm_source

	false

	false

	utm_medium.field

	Name of the field containing the utm_medium value in the session

	
	utm_medium

	false

	false

	utm_campaign.field

	Name of the field containing the utm_campaign value in the session

	
	utm_campaign

	false

	false

	utm_content.field

	Name of the field containing the utm_content value in the session

	
	utm_content

	false

	false

	utm_term.field

	Name of the field containing the utm_term value in the session

	
	utm_term

	false

	false

	source_of_traffic.suffix

	Suffix for the source of the traffic related fields

	
	source_of_traffic

	false

	false

	source_of_traffic.hierarchical

	Should the additional source of trafic information fields be added under a hierarchical father field or not.

	
	false

	false

	false

	elasticsearch.client.service

	The instance of the Controller Service to use for accessing Elasticsearch.

	
	null

	false

	false

	cache.service

	Name of the cache service to use.

	
	null

	false

	false

	cache.validity.timeout

	Timeout validity (in seconds) of an entry in the cache.

	
	0

	false

	false

	debug

	If true, an additional debug field is added. If the source info fields prefix is X, a debug field named X_from_cache contains a boolean value to indicate the origin of the source fields. The default value for this property is false (debug is disabled).

	
	false

	false

	false

	es.index

	Name of the ES index containing the list of search engines and social network.

	
	null

	false

	false

	es.type

	Name of the ES type to use.

	
	default

	false

	false

	es.search_engine.field

	Name of the ES field used to specify that the domain is a search engine.

	
	search_engine

	false

	false

	es.social_network.field

	Name of the ES field used to specify that the domain is a social network.

	
	social_network

	false

	false

Extra informations

Compute the source of traffic of a web session. Users arrive at a website or application through a variety of sources,
including advertising/paying campaigns, search engines, social networks, referring sites or direct access.
When analysing user experience on a webshop, it is crucial to collect, process, and report the campaign and traffic-source data.
To compute the source of traffic of a web session, the user has to provide the utm_* related properties if available
i-e: utm_source.field, utm_medium.field, utm_campaign.field, utm_content.field, utm_term.field)
, the referer (referer.field property) and the first visited page of the session (first.visited.page.field property).
By default the source of traffic information are placed in a flat structure (specified by the source_of_traffic.suffix property
with a default value of source_of_traffic). To work properly the setSourceOfTraffic processor needs to have access to an
Elasticsearch index containing a list of the most popular search engines and social networks. The ES index (specified by the es.index property) should be structured such that the _id of an ES document MUST be the name of the domain. If the domain is a search engine, the related ES doc MUST have a boolean field (default being search_engine) specified by the property es.search_engine.field with a value set to true. If the domain is a social network , the related ES doc MUST have a boolean field (default being social_network) specified by the property es.social_network.field with a value set to true.

 Services

Services

Find below the list.

CSVKeyValueCacheService

A cache that store csv lines as records loaded from a file

Module

com.hurence.logisland:logisland-service-inmemory-cache:1.1.1

Class

com.hurence.logisland.service.cache.CSVKeyValueCacheService

Tags

csv, service, cache

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	csv.format

	a configuration for loading csv

	default (Standard comma separated format, as for RFC4180 but allowing empty lines. Settings are: withDelimiter(‘,’) withQuote(‘”’) withRecordSeparator(“rn”) withIgnoreEmptyLines(true)), excel (Excel file format (using a comma as the value delimiter). Note that the actual value delimiter used by Excel is locale dependent, it might be necessary to customize this format to accommodate to your regional settings. withDelimiter(‘,’) withQuote(‘”’) withRecordSeparator(“rn”) withIgnoreEmptyLines(false) withAllowMissingColumnNames(true)), excel_fr (Excel file format (using a comma as the value delimiter). Note that the actual value delimiter used by Excel is locale dependent, it might be necessary to customize this format to accommodate to your regional settings. withDelimiter(‘;’) withQuote(‘”’) withRecordSeparator(“rn”) withIgnoreEmptyLines(false) withAllowMissingColumnNames(true)), mysql (Default MySQL format used by the SELECT INTO OUTFILE and LOAD DATA INFILE operations.This is a tab-delimited format with a LF character as the line separator. Values are not quoted and special characters are escaped with ‘’. The default NULL string is “N”. Settings are: withDelimiter(‘t’) withQuote(null) withRecordSeparator(‘n’) withIgnoreEmptyLines(false) withEscape(‘’) withNullString(“N”) withQuoteMode(QuoteMode.ALL_NON_NULL)), rfc4180 (Comma separated format as defined by RFC 4180. Settings are: withDelimiter(‘,’) withQuote(‘”’) withRecordSeparator(“rn”) withIgnoreEmptyLines(false)), tdf (Tab-delimited format. Settings are: withDelimiter(‘t’) withQuote(‘”’) withRecordSeparator(“rn”) withIgnoreSurroundingSpaces(true))

	default

	false

	false

	csv.header

	comma separated header values

	
	null

	false

	false

	csv.file.uri

	Path to the CSV File.

	
	null

	false

	false

	csv.file.path

	Local Path to the CSV File.

	
	null

	false

	false

	row.key

	th primary key of this db

	
	null

	false

	false

	cache.size

	The maximum number of element in the cache.

	
	16384

	false

	false

	first.line.header

	csv headers grabbed from first line

	
	null

	false

	false

	encoding.charset

	charset

	
	UTF-8

	false

	false

Extra informations

No additional information is provided

CassandraControllerService

Provides a controller service that for the moment only allows to bulkput records into cassandra.

Module

com.hurence.logisland:logisland-service-cassandra-client:1.1.1

Class

com.hurence.logisland.service.cassandra.CassandraControllerService

Tags

cassandra, service

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	cassandra.hosts

	Cassandra cluster hosts as a comma separated value list

	
	null

	false

	false

	cassandra.port

	Cassandra cluster port

	
	null

	false

	false

	cassandra.with-ssl

	If this property is true, use SSL. Default is no SSL (false).

	
	false

	false

	false

	cassandra.with-credentials

	If this property is true, use credentials. Default is no credentials (false).

	
	false

	false

	false

	cassandra.credentials.user

	The user name to use for authentication. cassandra.with-credentials must be true for that property to be used.

	
	null

	false

	false

	cassandra.credentials.password

	The user password to use for authentication. cassandra.with-credentials must be true for that property to be used.

	
	null

	false

	false

	batch.size

	The preferred number of Records to setField to the database in a single transaction

	
	1000

	false

	false

	bulk.size

	bulk size in MB

	
	5

	false

	false

	flush.interval

	flush interval in ms

	
	500

	false

	false

Extra informations

No additional information is provided

Elasticsearch_2_4_0_ClientService

Implementation of ElasticsearchClientService for Elasticsearch 2.4.0.

Module

com.hurence.logisland:logisland-service-elasticsearch_2_4_0-client:1.1.1

Class

com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_ClientService

Tags

elasticsearch, client

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values, and whether a property is considered “sensitive”..

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	backoff.policy

	strategy for retrying to execute requests in bulkRequest

	noBackoff (when a request fail there won’t be any retry.), constantBackoff (wait a fixed amount of time between retries, using user put retry number and throttling delay), exponentialBackoff (time waited between retries grow exponentially, using user put retry number and throttling delay), defaultExponentialBackoff (time waited between retries grow exponentially, using es default parameters)

	defaultExponentialBackoff

	false

	false

	throttling.delay

	number of time we should wait between each retry (in milliseconds)

	
	500

	false

	false

	num.retry

	number of time we should try to inject a bulk into es

	
	3

	false

	false

	batch.size

	The preferred number of Records to setField to the database in a single transaction

	
	1000

	false

	false

	bulk.size

	bulk size in MB

	
	5

	false

	false

	flush.interval

	flush interval in sec

	
	5

	false

	false

	concurrent.requests

	setConcurrentRequests

	
	2

	false

	false

	cluster.name

	Name of the ES cluster (for example, elasticsearch_brew). Defaults to ‘elasticsearch’

	
	elasticsearch

	false

	false

	ping.timeout

	The ping timeout used to determine when a node is unreachable. For example, 5s (5 seconds). If non-local recommended is 30s

	
	5s

	false

	false

	sampler.interval

	How often to sample / ping the nodes listed and connected. For example, 5s (5 seconds). If non-local recommended is 30s.

	
	5s

	false

	false

	username

	Username to access the Elasticsearch cluster

	
	null

	false

	false

	password

	Password to access the Elasticsearch cluster

	
	null

	true

	false

	shield.location

	Specifies the path to the JAR for the Elasticsearch Shield plugin. If the Elasticsearch cluster has been secured with the Shield plugin, then the Shield plugin JAR must also be available to this processor. Note: Do NOT place the Shield JAR into NiFi’s lib/ directory, doing so will prevent the Shield plugin from being loaded.

	
	null

	false

	false

	hosts

	ElasticSearch Hosts, which should be comma separated and colon for hostname/port host1:port,host2:port,…. For example testcluster:9300.

	
	null

	false

	false

	ssl.context.service

	The SSL Context Service used to provide client certificate information for TLS/SSL connections. This service only applies if the Shield plugin is available.

	
	null

	false

	false

	charset

	Specifies the character set of the document data.

	
	UTF-8

	false

	false

Extra informations

No additional information is provided

Elasticsearch_5_4_0_ClientService

Implementation of ElasticsearchClientService for Elasticsearch 5.4.0.

Module

com.hurence.logisland:logisland-service-elasticsearch_5_4_0-client:1.1.1

Class

com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_ClientService

Tags

elasticsearch, client

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values, and whether a property is considered “sensitive”..

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	backoff.policy

	strategy for retrying to execute requests in bulkRequest

	noBackoff (when a request fail there won’t be any retry.), constantBackoff (wait a fixed amount of time between retries, using user put retry number and throttling delay), exponentialBackoff (time waited between retries grow exponentially, using user put retry number and throttling delay), defaultExponentialBackoff (time waited between retries grow exponentially, using es default parameters)

	defaultExponentialBackoff

	false

	false

	throttling.delay

	number of time we should wait between each retry (in milliseconds)

	
	500

	false

	false

	num.retry

	number of time we should try to inject a bulk into es

	
	3

	false

	false

	batch.size

	The preferred number of Records to setField to the database in a single transaction

	
	1000

	false

	false

	bulk.size

	bulk size in MB

	
	5

	false

	false

	flush.interval

	flush interval in sec

	
	5

	false

	false

	concurrent.requests

	setConcurrentRequests

	
	2

	false

	false

	cluster.name

	Name of the ES cluster (for example, elasticsearch_brew). Defaults to ‘elasticsearch’

	
	elasticsearch

	false

	false

	ping.timeout

	The ping timeout used to determine when a node is unreachable. For example, 5s (5 seconds). If non-local recommended is 30s

	
	5s

	false

	false

	sampler.interval

	How often to sample / ping the nodes listed and connected. For example, 5s (5 seconds). If non-local recommended is 30s.

	
	5s

	false

	false

	username

	Username to access the Elasticsearch cluster

	
	null

	false

	false

	password

	Password to access the Elasticsearch cluster

	
	null

	true

	false

	shield.location

	Specifies the path to the JAR for the Elasticsearch Shield plugin. If the Elasticsearch cluster has been secured with the Shield plugin, then the Shield plugin JAR must also be available to this processor. Note: Do NOT place the Shield JAR into NiFi’s lib/ directory, doing so will prevent the Shield plugin from being loaded.

	
	null

	false

	false

	hosts

	ElasticSearch Hosts, which should be comma separated and colon for hostname/port host1:port,host2:port,…. For example testcluster:9300.

	
	null

	false

	false

	ssl.context.service

	The SSL Context Service used to provide client certificate information for TLS/SSL connections. This service only applies if the Shield plugin is available.

	
	null

	false

	false

	charset

	Specifies the character set of the document data.

	
	UTF-8

	false

	false

Extra informations

No additional information is provided

HBase_1_1_2_ClientService

Implementation of HBaseClientService for HBase 1.1.2. This service can be configured by providing a comma-separated list of configuration files, or by specifying values for the other properties. If configuration files are provided, they will be loaded first, and the values of the additional properties will override the values from the configuration files. In addition, any user defined properties on the processor will also be passed to the HBase configuration.

Module

com.hurence.logisland:logisland-service-hbase_1_1_2-client:1.1.1

Class

com.hurence.logisland.service.hbase.HBase_1_1_2_ClientService

Tags

hbase, client

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values, and whether a property supports the Expression Language .

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	hadoop.configuration.files

	Comma-separated list of Hadoop Configuration files, such as hbase-site.xml and core-site.xml for kerberos, including full paths to the files.

	
	null

	false

	false

	zookeeper.quorum

	Comma-separated list of ZooKeeper hosts for HBase. Required if Hadoop Configuration Files are not provided.

	
	null

	false

	false

	zookeeper.client.port

	The port on which ZooKeeper is accepting client connections. Required if Hadoop Configuration Files are not provided.

	
	null

	false

	false

	zookeeper.znode.parent

	The ZooKeeper ZNode Parent value for HBase (example: /hbase). Required if Hadoop Configuration Files are not provided.

	
	null

	false

	false

	hbase.client.retries

	The number of times the HBase client will retry connecting. Required if Hadoop Configuration Files are not provided.

	
	3

	false

	false

	phoenix.client.jar.location

	The full path to the Phoenix client JAR. Required if Phoenix is installed on top of HBase.

	
	null

	false

	true

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

dynamic-properties

	Name

	Value

	Description

	Allowable Values

	Default Value

	EL

	The name of an HBase configuration property.

	The value of the given HBase configuration property.

	These properties will be set on the HBase configuration after loading any provided configuration files.

	
	null

	false

Extra informations

No additional information is provided

LRUKeyValueCacheService

A controller service for caching data by key value pair with LRU (last recently used) strategy. using LinkedHashMap

Module

com.hurence.logisland:logisland-service-inmemory-cache:1.1.1

Class

com.hurence.logisland.service.cache.LRUKeyValueCacheService

Tags

cache, service, key, value, pair, LRU

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	cache.size

	The maximum number of element in the cache.

	
	16384

	false

	false

Extra informations

No additional information is provided

MaxmindIpToGeoService

Implementation of the IP 2 GEO Service using maxmind lite db file

Module

com.hurence.logisland:logisland-service-ip-to-geo-maxmind:1.1.1

Class

com.hurence.logisland.service.iptogeo.maxmind.MaxmindIpToGeoService

Tags

ip, service, geo, maxmind

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	maxmind.database.uri

	Path to the Maxmind Geo Enrichment Database File.

	
	null

	false

	false

	maxmind.database.path

	Local Path to the Maxmind Geo Enrichment Database File.

	
	null

	false

	false

	locale

	Locale to use for geo information. Defaults to ‘en’.

	
	en

	false

	false

	lookup.time

	Should the additional lookup_micros field be returned or not.

	
	false

	false

	false

Extra informations

No additional information is provided

MongoDBControllerService

Provides a controller service that wraps most of the functionality of the MongoDB driver.

Module

com.hurence.logisland:logisland-service-mongodb-client:1.1.1

Class

com.hurence.logisland.service.mongodb.MongoDBControllerService

Tags

mongo, mongodb, service

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values, and whether a property supports the Expression Language .

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	mongo.uri

	MongoURI, typically of the form: mongodb://host1[:port1][,host2[:port2],…]

	
	null

	false

	true

	mongo.db.name

	The name of the database to use

	
	null

	false

	true

	mongo.collection.name

	The name of the collection to use

	
	null

	false

	true

	batch.size

	The preferred number of Records to setField to the database in a single transaction

	
	1000

	false

	false

	bulk.size

	bulk size in MB

	
	5

	false

	false

	mongo.bulk.mode

	Bulk mode (insert or upsert)

	insert (Insert records whose key must be unique), upsert (Insert records if not already existing or update the record if already existing)

	insert

	false

	false

	flush.interval

	flush interval in ms

	
	500

	false

	false

	mongo.write.concern

	The write concern to use

	ACKNOWLEDGED, UNACKNOWLEDGED, FSYNCED, JOURNALED, REPLICA_ACKNOWLEDGED, MAJORITY

	ACKNOWLEDGED

	false

	false

	mongo.bulk.upsert.condition

	A custom condition for the bulk upsert (Filter for the bulkwrite). If not specified the standard condition is to match same id (‘_id’: data._id)

	
	${‘{ “_id” :”’ + record_id + ‘”}’}

	false

	true

Extra informations

No additional information is provided

RedisKeyValueCacheService

A controller service for caching records by key value pair with LRU (last recently used) strategy. using LinkedHashMap

Module

com.hurence.logisland:logisland-service-redis:1.1.1

Class

com.hurence.logisland.redis.service.RedisKeyValueCacheService

Tags

cache, service, key, value, pair, redis

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values, and whether a property is considered “sensitive”..

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	redis.mode

	The type of Redis being communicated with - standalone, sentinel, or clustered.

	standalone (A single standalone Redis instance.), sentinel (Redis Sentinel which provides high-availability. Described further at https://redis.io/topics/sentinel), cluster (Clustered Redis which provides sharding and replication. Described further at https://redis.io/topics/cluster-spec)

	standalone

	false

	false

	connection.string

	The connection string for Redis. In a standalone instance this value will be of the form hostname:port. In a sentinel instance this value will be the comma-separated list of sentinels, such as host1:port1,host2:port2,host3:port3. In a clustered instance this value will be the comma-separated list of cluster masters, such as host1:port,host2:port,host3:port.

	
	null

	false

	false

	database.index

	The database index to be used by connections created from this connection pool. See the databases property in redis.conf, by default databases 0-15 will be available.

	
	0

	false

	false

	communication.timeout

	The timeout to use when attempting to communicate with Redis.

	
	10 seconds

	false

	false

	cluster.max.redirects

	The maximum number of redirects that can be performed when clustered.

	
	5

	false

	false

	sentinel.master

	The name of the sentinel master, require when Mode is set to Sentinel

	
	null

	false

	false

	password

	The password used to authenticate to the Redis server. See the requirepass property in redis.conf.

	
	null

	true

	false

	pool.max.total

	The maximum number of connections that can be allocated by the pool (checked out to clients, or idle awaiting checkout). A negative value indicates that there is no limit.

	
	8

	false

	false

	pool.max.idle

	The maximum number of idle connections that can be held in the pool, or a negative value if there is no limit.

	
	8

	false

	false

	pool.min.idle

	The target for the minimum number of idle connections to maintain in the pool. If the configured value of Min Idle is greater than the configured value for Max Idle, then the value of Max Idle will be used instead.

	
	0

	false

	false

	pool.block.when.exhausted

	Whether or not clients should block and wait when trying to obtain a connection from the pool when the pool has no available connections. Setting this to false means an error will occur immediately when a client requests a connection and none are available.

	true, false

	true

	false

	false

	pool.max.wait.time

	The amount of time to wait for an available connection when Block When Exhausted is set to true.

	
	10 seconds

	false

	false

	pool.min.evictable.idle.time

	The minimum amount of time an object may sit idle in the pool before it is eligible for eviction.

	
	60 seconds

	false

	false

	pool.time.between.eviction.runs

	The amount of time between attempting to evict idle connections from the pool.

	
	30 seconds

	false

	false

	pool.num.tests.per.eviction.run

	The number of connections to tests per eviction attempt. A negative value indicates to test all connections.

	
	-1

	false

	false

	pool.test.on.create

	Whether or not connections should be tested upon creation.

	true, false

	false

	false

	false

	pool.test.on.borrow

	Whether or not connections should be tested upon borrowing from the pool.

	true, false

	false

	false

	false

	pool.test.on.return

	Whether or not connections should be tested upon returning to the pool.

	true, false

	false

	false

	false

	pool.test.while.idle

	Whether or not connections should be tested while idle.

	true, false

	true

	false

	false

	record.recordSerializer

	the way to serialize/deserialize the record

	com.hurence.logisland.serializer.KryoSerializer (serialize events as json blocs), com.hurence.logisland.serializer.JsonSerializer (serialize events as json blocs), com.hurence.logisland.serializer.AvroSerializer (serialize events as avro blocs), com.hurence.logisland.serializer.BytesArraySerializer (serialize events as byte arrays), com.hurence.logisland.serializer.KuraProtobufSerializer (serialize events as Kura protocol buffer), none (send events as bytes)

	com.hurence.logisland.serializer.JsonSerializer

	false

	false

Extra informations

No additional information is provided

Solr_5_5_5_ClientService

Implementation of ElasticsearchClientService for Solr 5.5.5.

Module

com.hurence.logisland:logisland-service-solr_5_5_5-client:1.1.1

Class

com.hurence.logisland.service.solr.Solr_5_5_5_ClientService

Tags

solr, client

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	batch.size

	The preferred number of Records to setField to the database in a single transaction

	
	1000

	false

	false

	bulk.size

	bulk size in MB

	
	5

	false

	false

	solr.cloud

	is slor cloud enabled

	
	false

	false

	false

	solr.collection

	name of the collection to use

	
	null

	false

	false

	solr.connection.string

	zookeeper quorum host1:2181,host2:2181 for solr cloud or http address of a solr core

	
	localhost:8983/solr

	false

	false

	solr.concurrent.requests

	setConcurrentRequests

	
	2

	false

	false

	flush.interval

	flush interval in ms

	
	500

	false

	false

	schema.update_timeout

	Schema update timeout interval in s

	
	15

	false

	false

Extra informations

No additional information is provided

Solr_6_4_2_ChronixClientService

Implementation of ChronixClientService for Solr 6 4 2

Module

com.hurence.logisland:logisland-service-solr_chronix_6.4.2-client:1.1.1

Class

com.hurence.logisland.service.solr.Solr_6_4_2_ChronixClientService

Tags

solr, client

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	batch.size

	The preferred number of Records to setField to the database in a single transaction

	
	1000

	false

	false

	solr.cloud

	is slor cloud enabled

	
	false

	false

	false

	solr.collection

	name of the collection to use

	
	null

	false

	false

	solr.connection.string

	zookeeper quorum host1:2181,host2:2181 for solr cloud or http address of a solr core

	
	localhost:8983/solr

	false

	false

	flush.interval

	flush interval in ms

	
	500

	false

	false

	group.by

	The field the chunk should be grouped by

	
	
	false

	false

Extra informations

No additional information is provided

Solr_6_6_2_ClientService

Implementation of ElasticsearchClientService for Solr 5.5.5.

Module

com.hurence.logisland:logisland-service-solr_6_6_2-client:1.1.1

Class

com.hurence.logisland.service.solr.Solr_6_6_2_ClientService

Tags

solr, client

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values.

allowable-values

	Name

	Description

	Allowable Values

	Default Value

	Sensitive

	EL

	batch.size

	The preferred number of Records to setField to the database in a single transaction

	
	1000

	false

	false

	bulk.size

	bulk size in MB

	
	5

	false

	false

	solr.cloud

	is slor cloud enabled

	
	false

	false

	false

	solr.collection

	name of the collection to use

	
	null

	false

	false

	solr.connection.string

	zookeeper quorum host1:2181,host2:2181 for solr cloud or http address of a solr core

	
	localhost:8983/solr

	false

	false

	solr.concurrent.requests

	setConcurrentRequests

	
	2

	false

	false

	flush.interval

	flush interval in ms

	
	500

	false

	false

	schema.update_timeout

	Schema update timeout interval in s

	
	15

	false

	false

Extra informations

No additional information is provided

 Dynamic properties

Dynamic properties

Overview

You use components to run jobs in logisland that manipulate records. Those components use properties that you specify in the job configuration file.
Some of them are defined in advance by the component’s developer. They got a name and you have to use it to define these properties.
We call those properties static properties.

Some components support dynamic properties. When this is the case, any properties specified in job conf for this component that is not
a static property will be used as a dynamic property instead of throwing an error for a bad configuration.

In this section we will talk about those properties and how you can use them.

Structure of a dynamic properties

Dynamic properties are really just like static properties but build on the fly. It allow to use both the name and the value of the property
by the developer. For example instead of specifying :

record.name: myName
record.value: myValue

You could specify :

myName: myValue

The advantage is that you can have any number of dynamic property whereas you have to specify in advance all static properties…

Usage of a dynamic properties

You can check the documentation of AddFields processor that we will use in those example.

Adding a field which is concatenation of two others using ‘_’ as joining string

set those dynamic properties in AddFields processor :

	concat2fields : value1

	my_countries : 3

	my_countries.type : INT

Then records processed by this processor would have 2 more fields out of this processors:

	field ‘concat2fields’ of type String with value ‘value1’

	field ‘my_countries’ of type Int with value ‘3’

By default if no type is specified by a dynamic property it use a type of String or the same type as old value if field already existed and you choose an overwrite policy.

See AddFields processor doc fore more information.

Conclusion

As you can see dynamic properties are very flexible but it’s usage is very dependent of the implementation of the component’s developer.

 Expression Language

Expression Language

Overview

All data in Logisland is represented by an abstraction called a Record. Those records contains fields of different types.

You use components to run jobs in logisland that manipulate those records. Those components use properties that you specify in the job configuration file.
Some of them support the expression language (EL). In this section we will talk about those properties and how you can use them.

Structure of a Logisland Expression

The Logisland expression Language always begins with the start delimiter ${ and ends
with the end delimiter }. Between the start and end delimiters is the text of the
expression itself. In its most basic form, the expression can consist of just a
record field name. For example, ${name} will return the value of the field name
of the record used.

The use of the property depends on the implementation of the components ! Indeed it is the component
that decide to evaluate your Logisland expression with which Record.

For example the AddField processor use Logisland expression in its dynamic properties.

	The key representing the name of the field to add.

	The value can be a Logisland expression that will be used to calculate the value of the new field. In this expression you can use fields value of the current Record because it is passed as context of the Logisland expression by this processor.

So be sure to carefully read description of the properties to understand how it will be evaluated and for what purpose.

We are currently using the mvel language which you can check documentation here [http://mvel.documentnode.com/].

Note

If you want to be able to use another ScriptEngine than mvel (javascript for example). You can open an issue to ask this feature.
Feel free to make a Pull request as well to implement this new feature.

We have implemented some example as unit test as well if you want to check in the code source, the class is
com.hurence.logisland.component.TestInterpretedPropertyValueWithMvelEngine in the module com.hurence.logisland:logisland-api.

Otherwise we will show you some simple examples using the AddField processor in next Section.

Usage of a Logisland Expression

You can check the documentation of AddFields processor that we will use in those example.

Adding a field which is concatenation of two others using ‘_’ as joining string

set those dynamic properties in AddFields processor :

	concat2fields : ${field1 + “_” + field2}

	my_countries : ${[“france”, “allemagne”]}

	my_countries.type : array

	my_employees_by_countries : ${[“france” : 100, “allemagne” : 50]}

	my_employees_by_countries.type : map

Then if in input of this processor there is records with fields : field1=value1 and field2=value2, it would have 3 more fields once
out of this processor:

	field ‘concat2fields’ of type String with value ‘value1_value2’

	field ‘my_countries’ of type Array containing values ‘france’ and ‘allemagne’

	field ‘my_employees_by_countries’ of type Map with key value pairs “france” : 100 and “allemagne” : 50

By default if no type is specified by a dynamic property it use a type of String or the same type as old value if field already existed and you choose an overwrite policy.

See AddFields processor doc for more information.

Conclusion

As you can see the language expression is very flexible but it’s usage is very dependent of the implementation of the component’s developer.

 Developer Documentation

Developer Documentation

Contents:

	Developer Guide
	Workflows

	Build the code and run the tests

	Prerequisites

	Building

	Release to maven repositories

	Publish release assets to github

	Publish Docker image

	Publish artifact to github

	Components
	Processors

	Services

	Connectors

	Streams

	Engines

	Object Model
	Record

	PropertyDescriptors

	ProcessContext

	ControllerServiceInitializationContext

	Documentation
	Documentation Guide

 Developer Guide

Developer Guide

This document summarizes information relevant to logisland committers and contributors.
It includes information about the development processes and policies as well as the tools we use to facilitate those.

Workflows

This section explains how to perform common activities such as reporting a bug or merging a pull request.

Internal dev (aka logisland team)

We’re using GitFlow for github so read carefully the docs :
https://datasift.github.io/gitflow/GitFlowForGitHub.html

Coding Guidelines

Basic

	Avoid cryptic abbreviations. Single letter variable names are fine in very short methods with few variables, otherwise make them informative.

	Clear code is preferable to comments. When possible make your naming so good you don’t need comments. When that isn’t possible comments should be thought of as mandatory, write them to be read.

	Logging, configuration, and public APIs are our “UI”. Make them pretty, consistent, and usable.

	Maximum line length is 130.

	Don’t leave TODOs in the code or FIXMEs if you can help it. Don’t leave println statements in the code. TODOs should be filed as github issues.

	User documentation should be considered a part of any user-facing the feature, just like unit tests. Example REST apis should’ve accompanying documentation.

	Tests should never rely on timing in order to pass.

	Every unit test should leave no side effects, i.e., any test dependencies should be set during setup and clean during tear down.

Java

	Apache license headers. Make sure you have Apache License headers in your files.

	Tabs vs. spaces. We are using 4 spaces for indentation, not tabs.

	Blocks. All statements after if, for, while, do, … must always be encapsulated in a block with curly braces (even if the block contains one statement):

for (...) {
 ...
}

	No wildcard imports.

	No unused imports. Remove all unused imports.

	No raw types. Do not use raw generic types, unless strictly necessary (sometime necessary for signature matches, arrays).

	Suppress warnings. Add annotations to suppress warnings, if they cannot be avoided (such as “unchecked”, or “serial”).

	Comments. Add JavaDocs to public methods or inherit them by not adding any comments to the methods.

	logger instance should be upper case LOG.

	When in doubt refer to existing code or Java Coding Style [http://google.github.io/styleguide/javaguide.html] except line breaking, which is described above.

Logging

	Please take the time to assess the logs when making a change to ensure that the important things are getting logged and there is no junk there.

	There are six levels of logging TRACE, DEBUG, INFO, WARN, ERROR, and FATAL, they should be used as follows.

	2.1. INFO is the level you should assume the software will be run in.

	INFO messages are things which are not bad but which the user will definitely want to know about
every time they occur.

	2.2 TRACE and DEBUG are both things you turn on when something is wrong and you want to

	figure out what is going on. DEBUG should not be so fine grained that it will seriously effect the performance
of the server. TRACE can be anything. Both DEBUG and TRACE statements should be
wrapped in an if(logger.isDebugEnabled) if an expensive computation in the argument list of log method call.

	2.3. WARN and ERROR indicate something that is bad.

	Use WARN if you aren’t totally sure it is bad, and ERROR if you are.

2.4. Use FATAL only right before calling System.exit().

	Logging statements should be complete sentences with proper capitalization that are written to be read by a person not necessarily familiar with the source code.

	
	String appending using StringBuilders should not be used for building log messages.

	Formatting should be used. For ex:
LOG.debug(“Loaded class [{}] from jar [{}]”, className, jarFile);

	In Logisland class implementing ConfigurableComponent use getLogger method to log. Most of components in Logisland are ConfigurableComponent.

TimeZone in Tests

Your environment jdk can be different than travis ones. Be aware that there is changes on TimeZone objects between different
version of jdk… Even between 8.x.x versions.
For example TimeZone “America/Cancun” may not give the same date in your environment than in travis one…

Contribute code

Create a pull request

Pull requests should be done against the read-only git repository at
https://github.com/hurence/logisland.

Take a look at Creating a pull request [https://help.github.com/articles/creating-a-pull-request]. In a nutshell you
need to:

	Fork [https://help.github.com/articles/fork-a-repo] the Logisland GitHub repository at
https://github.com/hurence/logisland to your personal GitHub
account. See Fork a repo [https://help.github.com/articles/fork-a-repo] for detailed instructions.

	Commit any changes to your fork.

	Send a pull request [https://help.github.com/articles/creating-a-pull-request] to the Logisland GitHub repository
that you forked in step 1. If your pull request is related to an existing IoTaS github issue ticket – for instance, because
you reported a bug report via github issue earlier – then prefix the title of your pull request with the corresponding github issue
ticket number (e.g. IOT-123: …).

You may want to read Syncing a fork [https://help.github.com/articles/syncing-a-fork] for instructions on how to keep
your fork up to date with the latest changes of the upstream Streams repository.

We are using gitflow to have standard way of starting features, hotfixes and releases.
You can check documentation about gitflow here [https://datasift.github.io/gitflow/GitFlowForGitHub.html].

Git Commit Messages Format

The Git commit messages must be standardized as follows:

LOGISLAND-XXX: Title matching exactly the github issue Summary (title)

	An optional, bulleted (+, -, ., *), summary of the contents of

	the patch. The goal is not to describe the contents of every file,

	but rather give a quick overview of the main functional areas

	addressed by the patch.

The text immediately following the github issue number (LOGISLAND-XXX:) must be an exact transcription of the github issue summary (title), not the a summary of the contents of the patch.

If the github issue summary does not accurately describe what the patch is addressing, the github issue summary must be modified, and then copied to the Git commit message.

A summary with the contents of the patch is optional but strongly encouraged if the patch is large and/or the github issue title is not expressive enough to describe what the patch is doing. This text must be bulleted using one of the following bullet points (+, -, .,). There must be at last a 1 space indent before the bullet char, and exactly one space between bullet char and the first letter of the text. Bullets are not optional, but required*.

Develop components

You can find help on these topics here :

	Processors

	Services

	Connectors

	Streams

	Engines

Build the code and run the tests

Prerequisites

First of all you need to make sure you are using maven 3.2.5 or higher and JDK 1.8 or higher.

Building

The following commands must be run from the top-level directory.

mvn install

Would build a light version of logisland with only common processors installed.

mvn install -Pfull

Would build a heavy version of logisland with all logisland plugins installed.

If you wish to skip the unit tests you can do this by adding -DskipTests to the command line.

If you wish to add all the plugins to the build you can do this by adding -Pfull to the command line.

Release to maven repositories

to release artifacts (if you’re allowed to), follow this guide release to OSS Sonatype with maven [http://central.sonatype.org/pages/apache-maven.html]

./update-version.sh -o 1.1.1 -n 14.4
 mvn license:format
 mvn test
 mvn -DperformRelease=true clean deploy -Pfull
 mvn versions:commit

follow the staging procedure in oss.sonatype.org [https://oss.sonatype.org/#stagingRepositories] or read Sonatype book [http://books.sonatype.com/nexus-book/reference/staging-deployment.html#staging-maven]

go to oss.sonatype.org [https://oss.sonatype.org/#stagingRepositories] to release manually the artifact

Publish release assets to github

please refer to https://developer.github.com/v3/repos/releases

curl -XPOST https://uploads.github.com/repos/Hurence/logisland/releases/v1.1.1/assets?name=logisland-1.1.1-bin.tar.gz -v –data-binary @logisland-assembly/target/logisland-1.1.1-bin.tar.gz –user oalam -H ‘Content-Type: application/gzip’

Publish Docker image

Building the image

build logisland
mvn install -DskipTests -Pdocker -Pfull

verify image build
docker images

then login and push the latest image

docker login
docker push hurence/logisland

Publish artifact to github

Tag the release + upload latest tgz

 Components

Components

Contents:

	Processors
	Interfaces

	Base of processors

	Important Object Notions

	Important methods

	Add documentation about the processor

	Add your processor as a logisland plugin

	Services
	Interfaces

	Base of controller services

	Important Object Notions

	Important methods

	Add documentation about the service

	Add your service as a logisland plugin

	Connectors

	Streams

	Engines
	Add your engine in the assembly

	Add your engine in the documentation

 Processors

Processors

This document summarizes information relevant to develop a logisland Processor.

Interfaces

A Logisland processor must implements the com.hurence.logisland.processor.Processor Interface.

Base of processors

For making easier the processor implementation we advise you to extends com.hurence.logisland.processor.AbstractProcessor. This way
most of the work is already done for you and you will benefit from future improvements.

Note

If you do not extend com.hurence.logisland.processor.AbstractProcessor, there is several point to be carefull with.
Read following section

Not using AbstractProcessor

The documentation for this part is not available yet. If you want to borrow this path, feel free to open an issue and/or talk with us on gitter
about it so we can advise you on the important point to be carefull with.

Important Object Notions

Here we will present you the objects that you will probably have to use.

PropertyDescriptor

To implement a Processor you will have to add PropertyDescriptors to your processor.
The standard way to do this is to add them as static variables of your Processor Classes. Then they will be used in the
processor’s methods.

private static final AllowableValue OVERWRITE_EXISTING =
 new AllowableValue("overwrite_existing", "overwrite existing field", "if field already exist");

private static final AllowableValue KEEP_OLD_FIELD =
 new AllowableValue("keep_only_old_field", "keep only old field value", "keep only old field");

private static final PropertyDescriptor CONFLICT_RESOLUTION_POLICY = new PropertyDescriptor.Builder()
 .name("conflict.resolution.policy")
 .description("What to do when a field with the same name already exists ?")
 .required(false)
 .defaultValue(KEEP_OLD_FIELD.getValue())
 .allowableValues(OVERWRITE_EXISTING, KEEP_OLD_FIELD)
 .build();

ProcessContext

See ProcessContext for more information.

Record

See Record for more information.

Important methods

Here we will present you the methods that you will probably have to implement or override.

getSupportedPropertyDescriptors

This method is required by AbstractProcessor, it is used to verify that user configuration for your processor is correct.
This method should return the list of PropertyDescriptor that your processor supports. Be sure to add any Descriptor
provided by parents if any using super.getSupportedPropertyDescriptors() methods.

Here an example with only one supported property

@Override
public List<PropertyDescriptor> getSupportedPropertyDescriptors() {
 return Collections.singletonList(CONFLICT_RESOLUTION_POLICY);
}

getSupportedDynamicPropertyDescriptor

This method is required by AbstractProcessor and is not required if you do not support dynamic properties.
Otherwise create here yours dynamic properties descriptions.

This property descriptor will be used to validate any user key configuration that is not in the list of supported properties.
If you return null, it is considered that the property name is not a valid dynamic property.

You can have several type of supported dynamic properties if you want as in the example below.
Go there to learn more about Dynamic properties.

 @Override
 protected PropertyDescriptor getSupportedDynamicPropertyDescriptor(final String propertyDescriptorName) {
 if (propertyDescriptorName.endsWith(DYNAMIC_PROPS_TYPE_SUFFIX)) {
 return new PropertyDescriptor.Builder()
 .name(propertyDescriptorName)
 .expressionLanguageSupported(false)
 .addValidator(new StandardValidators.EnumValidator(FieldType.class))
 .allowableValues(FieldType.values())
 .defaultValue(FieldType.STRING.getName().toUpperCase())
 .required(false)
 .dynamic(true)
 .build();
 }
 if (propertyDescriptorName.endsWith(DYNAMIC_PROPS_NAME_SUFFIX)) {
 return new PropertyDescriptor.Builder()
 .name(propertyDescriptorName)
 .expressionLanguageSupported(true)
 .addValidator(StandardValidators.NON_EMPTY_VALIDATOR)
 .required(false)
 .dynamic(true)
 .build();
 }
 return new PropertyDescriptor.Builder()
 .name(propertyDescriptorName)
 .expressionLanguageSupported(true)
 .addValidator(StandardValidators.NON_EMPTY_VALIDATOR)
 .required(false)
 .dynamic(true)
 .build();
}

init

This method should contain all initialization variables of your processor. It is called at least once before processing records.
So you can do quite heavy initialization here. But you can also use controller services as property for sharing heavy components
between different processors. You should always use a controller service for interacting with extern sources.
LINK TODO services as property

Note

It is required to use at the start of the method the super.init method ! (It does some core initializing).

Example :

@Override
public void init(ProcessContext context) {
 super.init(context);
 initDynamicProperties(context);
 this.conflictPolicy = context.getPropertyValue(CONFLICT_RESOLUTION_POLICY).asString();
}

process

This method is the core of the processor. This is this method that interact with Logisland Record.
It either modify them, use them, filter them or whatever you want.
Below an example that is just adding a new field to each record (this is obviously not a real processor).

@Override
public Collection<Record> process(ProcessContext context, Collection<Record> records) {
 for (Record record : records) {
 record.setStringField("my_first_processor_impl", "Hello world !");
 }
 return records;
}

Add documentation about the processor

The logisland-documentation module contains logisland documentation. See Documentation Guide for more information.
Some part of the documentation is automatically generated at build time. It uses annotation in logisland code.

In our case of a processors you have to add those Annotation of ConfigurableComponent.

Also you need to add your module dependency in documentation module like explained here Add a ConfigurableComponent in the auto generate documentation.

Add your processor as a logisland plugin

Unless the new processor you implemented is already in an existing logisland module you will have to do those two steps below.

Make your module a logisland plugin container

You will have to build your module as a plugin in two steps :
* Using spring-boot-maven-plugin that will build a fat jar of your module.
* Using our custom plugin logisland-maven-plugin that will modify the manifest of the jar so that logisland get some meta information.

You just have to add this code in the pom.xml of your module.

<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <executions>
 <execution>
 <phase>package</phase>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>com.hurence.logisland</groupId>
 <artifactId>logisland-maven-plugin</artifactId>
 <executions>
 <execution>
 <phase>package</phase>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

Add your module in tar gz assembly

You will have to add your module as a dependency in the logisland-assembly module. Add it in full maven profile so that it is automatically
Added to logisland jar when building with -Pfull option.

<profile>
 <id>full</id>
 <activation>
 <activeByDefault>false</activeByDefault>
 </activation>
 <dependencies>
 ...
 <dependency>
 <groupId>com.hurence.logisland</groupId>
 <artifactId>YOUR_MODULE_NAME</artifactId>
 <version>${project.version}</version>
 </dependency>
 </dependencies>
</profile>

 Services

Services

This document summarizes information relevant to develop a logisland controller service.

Interfaces

A Logisland controller service must implements the com.hurence.logisland.controller.ControllerService Interface.

Base of controller services

For making easier the controller service implementation we advise you to extends com.hurence.logisland.controller.AbstractControllerService. This way
most of the work is already done for you and you will benefit from future improvements.

Note

If you do not extend com.hurence.logisland.controller.AbstractControllerService, there is several point to be carefull with.
Read following section

Not using AbstractControllerService

The documentation for this part is not available yet. If you want to borrow this path, feel free to open an issue and/or talk with us on gitter
about it so we can advise you on the important point to be carefull with.

Important Object Notions

Here we will present you the objects that you will probably have to use.

PropertyDescriptor

To implement a Processor you will have to add PropertyDescriptors to your processor.
The standard way to do this is to add them as static variables of your Processor Classes. Then they will be used in the
processor’s methods.

private static final AllowableValue OVERWRITE_EXISTING =
 new AllowableValue("overwrite_existing", "overwrite existing field", "if field already exist");

private static final AllowableValue KEEP_OLD_FIELD =
 new AllowableValue("keep_only_old_field", "keep only old field value", "keep only old field");

private static final PropertyDescriptor CONFLICT_RESOLUTION_POLICY = new PropertyDescriptor.Builder()
 .name("conflict.resolution.policy")
 .description("What to do when a field with the same name already exists ?")
 .required(false)
 .defaultValue(KEEP_OLD_FIELD.getValue())
 .allowableValues(OVERWRITE_EXISTING, KEEP_OLD_FIELD)
 .build();

ControllerServiceInitializationContext

See ControllerServiceInitializationContext for more information.

Record

See Record for more information.

Important methods

Here we will present you the methods that you will probably have to implement or override.

getSupportedPropertyDescriptors

This method is required by AbstractProcessor, it is used to verify that user configuration for your processor is correct.
This method should return the list of PropertyDescriptor that your processor supports. Be sure to add any Descriptor
provided by parents if any using super.getSupportedPropertyDescriptors() methods.

Here an example with only one supported property

@Override
public List<PropertyDescriptor> getSupportedPropertyDescriptors() {
 return Collections.singletonList(CONFLICT_RESOLUTION_POLICY);
}

getSupportedDynamicPropertyDescriptor

This method is required by AbstractProcessor and is not required if you do not support dynamic properties.
Otherwise create here yours dynamic properties descriptions.

This property descriptor will be used to validate any user key configuration that is not in the list of supported properties.
If you return null, it is considered that the property name is not a valid dynamic property.

You can have several type of supported dynamic properties if you want as in the example below.

 @Override
 protected PropertyDescriptor getSupportedDynamicPropertyDescriptor(final String propertyDescriptorName) {
 if (propertyDescriptorName.endsWith(DYNAMIC_PROPS_TYPE_SUFFIX)) {
 return new PropertyDescriptor.Builder()
 .name(propertyDescriptorName)
 .expressionLanguageSupported(false)
 .addValidator(new StandardValidators.EnumValidator(FieldType.class))
 .allowableValues(FieldType.values())
 .defaultValue(FieldType.STRING.getName().toUpperCase())
 .required(false)
 .dynamic(true)
 .build();
 }
 if (propertyDescriptorName.endsWith(DYNAMIC_PROPS_NAME_SUFFIX)) {
 return new PropertyDescriptor.Builder()
 .name(propertyDescriptorName)
 .expressionLanguageSupported(true)
 .addValidator(StandardValidators.NON_EMPTY_VALIDATOR)
 .required(false)
 .dynamic(true)
 .build();
 }
 return new PropertyDescriptor.Builder()
 .name(propertyDescriptorName)
 .expressionLanguageSupported(true)
 .addValidator(StandardValidators.NON_EMPTY_VALIDATOR)
 .required(false)
 .dynamic(true)
 .build();
}

init

This method should contain all initialization variables of your controller service. It is called at least once before you can use it.
So you can do quite heavy initialization here. You should instantiate connection with your service you want to controll so that user
of this controller can request the service without having to etablish the contact first.
Note that you should handle case where service session time out or is closed for any reason. In this case, your service should
be able to establish a connection again automatically when needed, the framework will not handle this for you.

Note

It is required to use at the start of the method the super.init method ! (It does some core initializing).

Example :

@Override
public void init(ProcessContext context) {
 super.init(context);
 this.serviceClient = buildServiceClient();
}

Other methods defined in an API

Services should implement an interface defining an API. For exemple com.hurence.logisland.service.datastore.DatastoreClientService
represents a generic api for any datastore. The advantage of using this is that a processor can work with all services implementing
this interface if it is declared as a DatastoreClientService instance.

For example the BulkPut processor use a DatastoreClientService as input so it can inject in using
any service implementing DatastoreClientService. So it can inject potentially in any database.

You can create a special module to create a desired interface that you want your service to implement. This way other services
would be able to use it as well.

Here a method for example defined in DatastoreClientService.

/**
 * Drop the specified collection/index/table/bucket.
 * Specify namespace as dotted notation like in `global.users`
 */
void dropCollection(String name)throws DatastoreClientServiceException;

Add documentation about the service

The logisland-documentation module contains logisland documentation. See Documentation Guide for more information.
Some part of the documentation is automatically generated at build time. It uses annotation in logisland code.

In our case of a service you have to add those Annotation of ConfigurableComponent.

Also you need to add your module dependency in documentation module like explained here Add a ConfigurableComponent in the auto generate documentation.

Add your service as a logisland plugin

Unless the new service you implemented is already in an existing logisland module you will have to do those two steps below.

Make your module a logisland plugin container

You will have to build your module as a plugin in two steps :
* Using spring-boot-maven-plugin that will build a fat jar of your module.
* Using our custom plugin logisland-maven-plugin that will modify the manifest of the jar so that logisland get some meta information.

You just have to add this code in the pom.xml of your module.

<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <executions>
 <execution>
 <phase>package</phase>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>com.hurence.logisland</groupId>
 <artifactId>logisland-maven-plugin</artifactId>
 <executions>
 <execution>
 <phase>package</phase>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

Add your module in tar gz assembly

You will have to add your module as a dependency in the logisland-assembly module. Add it in full maven profile so that it is automatically
Added to logisland jar when building with -Pfull option.

<profile>
 <id>full</id>
 <activation>
 <activeByDefault>false</activeByDefault>
 </activation>
 <dependencies>
 ...
 <dependency>
 <groupId>com.hurence.logisland</groupId>
 <artifactId>YOUR_MODULE_NAME</artifactId>
 <version>${project.version}</version>
 </dependency>
 </dependencies>
</profile>

 Connectors

Connectors

This documentation is not available yet but you can check on existing examples in logisland-connectors module.
All connectors should be implemented in this module.

 Streams

Streams

This documentation is not available yet.

 Engines

Engines

This documentation is not available yet but you can check on existing examples in logisland-engines module.
All engines should be implemented in this module.

Add your engine in the assembly

You’ll have to add your engine in the assembly in module logisland-assembly. Add it in profile full of pom.

Add your engine in the documentation

To add docs about your engine you can check Add a ConfigurableComponent in the auto generate documentation.

 Object Model

Object Model

Contents:

	Record

	PropertyDescriptors
	Purpose

	Builder

	ProcessContext

	ControllerServiceInitializationContext

 Record

Record

This documentation is not available yet.

 PropertyDescriptors

PropertyDescriptors

This document summarizes information relevant for using com.hurence.logisland.component.PropertyDescriptor
which is part of Logisland api and is used throughout Logisland.

Purpose

This object is used to describe a property that users can used in job configuration when using a component.
In a component, you will describe those properties using com.hurence.logisland.component.PropertyDescriptor.

Builder

You create a PropertyDescriptor using the builder this way :

private static final PropertyDescriptor CONFLICT_RESOLUTION_POLICY = new PropertyDescriptor.Builder()
 .name("conflict.resolution.policy")
 .description("What to do when a field with the same name already exists ?")
 .required(false)
 .defaultValue(KEEP_OLD_FIELD.getValue())
 .allowableValues("value1", "value2")
 .expressionLanguageSupported(false)
 .addValidator(StandardValidators.NON_EMPTY_VALIDATOR)
 .sensitive(true)
 .build();

You can use

.identifiesControllerService(ElasticsearchClientService.class)

When you want a property to be used to reference a Services

properties

Here we will describe each element you can set to a PropertyDescriptor.

name

This is the string that will be used by the client in the yaml conf file.

description

This is used in the auto generated documentation of components to describe properties.

required

If this property is mandatory or not

defaultValue

Default value if any

allowableValues

To specify a specific set of authorized values (Add a constraint on the expected value of the property).

expressionLanguageSupported

Specify if Expression Language is supported for this property or not.

addValidator

Add given validator to the property (Add a constraint on the expected value of the property).

sensitive

Specifies if the property contain sensitive information or not.

 ProcessContext

ProcessContext

This documentation is not available yet.

 ControllerServiceInitializationContext

ControllerServiceInitializationContext

You can use it as a ProcessContext.
See ProcessContext for more information.

 Documentation

Documentation

Contents:

	Documentation Guide
	Introduction

	Modify the hard coded documentation

	Modify auto generated documentation

	Add a ConfigurableComponent in the auto generate documentation

 Documentation Guide

Documentation Guide

Here we will describe you how the doc in logisland is build and how to modify it.

Introduction

The documentation in logisland is handled by logisland-documentation module which build
the automated part of the doc. That is why you should correctly annotate your components when developing.

All .rst files in this module are used to build the doc. We use Sphinx and https://readthedocs.org/ for that.

So in order to change the documentation you must change these files. But do not modify files that are automatically generated !
The auto generated files are in the components directory. (Except for the index files)

Modify the hard coded documentation

We use ReStructuredText format for writing the doc. Then we generate html pages with Sphinx [http://www.sphinx-doc.org].
So you should be familiarized with this if you wants to do some advanced docs. Otherwise you can just modify files for minor changes.

Modify auto generated documentation

To generate generated documentation, just install the module

cd logisland-documentation
mvn install -DskipTests

By default, it will build all components doc.
At the moment you must commit any modification to those files in order for it to appear on online documentation.

Annotation of ConfigurableComponent

The auto generated documentation use annotation in code.
So be sure to add below anotations in every Component you develop.

Tags

It should be a list of words. So a user can rapidly filter out components. This is not currently a feature implemented
but you should still mention those tags for future use.

CapabilityDescription

This tag is used to describe the components. It should be in .rst format.

DynamicProperty

This is used when your components support Dynamic properties.
You specify each property to explain how it will be used.

For example :

@DynamicProperty(name = "field to add",
 supportsExpressionLanguage = false,
 value = "default value",
 description = "Add a field to the record with the default value")

Means :

	that the name of the property will be the name of a new field created in record.

	that the value specified can support or not expression language.

	that the value will be the used as value for the new property.

	you can add a general description as well.

DynamicProperties

This is used when your components support Dynamic properties.
You use thi annotation instead of DynamicProperty if your components support
different type of Dynamic properties.

You specify a list of annotation @DynamicProperty, one by type you support.

For example :

@DynamicProperties(value = {
 @DynamicProperty(name = "Name of the field to add",
 supportsExpressionLanguage = true,
 value = "Value of the field to add",
 description = "Add a field to the record with the specified value. Expression language can be used." +
 "You can not add a field that end with '.type' as this suffix is used to specify the type of fields to add",
 nameForDoc = "fakeField"),
 @DynamicProperty(name = "Name of the field to add with the suffix '"+ AddFields.DYNAMIC_PROPS_TYPE_SUFFIX +"'",
 supportsExpressionLanguage = false,
 value = "Type of the field to add",
 description = "Add a field to the record with the specified type. These properties are only used if a correspondant property without" +
 " the suffix '"+ AddFields.DYNAMIC_PROPS_TYPE_SUFFIX +"' is already defined. If this property is not defined, default type for adding fields is String." +
 "You can only use Logisland predefined type fields.",
 nameForDoc = "fakeField" + AddFields.DYNAMIC_PROPS_TYPE_SUFFIX),
 @DynamicProperty(name = "Name of the field to add with the suffix '" + AddFields.DYNAMIC_PROPS_NAME_SUFFIX + "'",
 supportsExpressionLanguage = true,
 value = "Name of the field to add using expression language",
 description = "Add a field to the record with the specified name (which is evaluated using expression language). " +
 "These properties are only used if a correspondant property without" +
 " the suffix '" + AddFields.DYNAMIC_PROPS_NAME_SUFFIX + "' is already defined. If this property is not defined, " +
 "the name of the field to add is the key of the first dynamic property (which is the main and only required dynamic property).",
 nameForDoc = "fakeField" + AddFields.DYNAMIC_PROPS_NAME_SUFFIX)
})

ConfigurableComponent Method used

Each components is instantiated as a ConfigurableComponent, then we use the method :

List<PropertyDescriptor> getPropertyDescriptors();

To add information about evey supported property by the component.

Add a ConfigurableComponent in the auto generate documentation

We have a java job DocGenerator which generate documentation about ConfigurableComponent in the classpath of the JVM.
Here the usage of the job :

usage: com.hurence.logisland.documentation.DocGenerator [-a] [-d <arg>] [-f <arg>] [-h]
 -a,--append Whether to append or replace file
 -d,--doc-dir <arg> dir to generate documentation
 -f,--file-name <arg> file name to generate documentation about components in classpath
 -h,--help Print this help.

In the pom of the module we use this job several time with different parameters using the exec-maven-plugin.
We launch it several time with different classpath to avoid conflict issue with different version of libraries.
If you want your components documentation to be generated you have to add it in one of those executions.
If you are dealing with dependencies problem you can create a completely new execution.

For processors and services this should not be too hard as they are packaged as plugin.

For example :

<execution>
 <id>generate doc services</id>
 <phase>install</phase>
 <configuration>
 <executable>java</executable>
 <arguments>
 <argument>-classpath</argument>
 <classpath>
 <dependency>commons-cli:commons-cli</dependency>
 <dependency>commons-io:commons-io</dependency>
 <dependency>org.apache.commons:commons-lang3</dependency>
 <dependency>org.slf4j:slf4j-simple</dependency>
 <dependency>org.slf4j:slf4j-api</dependency>
 <dependency>com.hurence.logisland:logisland-api</dependency>
 <!--<dependency>com.fasterxml.jackson.core:jackson-core</dependency>-->
 <!--<dependency>com.fasterxml.jackson.core:jackson-databind</dependency>-->
 <dependency>com.hurence.logisland:logisland-utils</dependency>
 <dependency>com.hurence.logisland:logisland-api</dependency>
 <dependency>com.hurence.logisland:logisland-plugin-support</dependency>
 <!--Needed dependencies by logisland-plugin-support-->
 <dependency>cglib:cglib-nodep</dependency>
 <dependency>org.springframework.boot:spring-boot-loader</dependency>
 <!--SERVICE-->
 <dependency>com.hurence.logisland:logisland-service-hbase_1_1_2-client</dependency>
 <dependency>com.hurence.logisland:logisland-service-elasticsearch_2_4_0-client</dependency>
 <dependency>com.hurence.logisland:logisland-service-elasticsearch_5_4_0-client</dependency>
 <dependency>com.hurence.logisland:logisland-service-redis</dependency>
 <dependency>com.hurence.logisland:logisland-service-mongodb-client</dependency>
 <dependency>com.hurence.logisland:logisland-service-cassandra-client</dependency>
 <dependency>com.hurence.logisland:logisland-service-solr_5_5_5-client</dependency>
 <dependency>com.hurence.logisland:logisland-service-solr_6_6_2-client</dependency>
 <dependency>com.hurence.logisland:logisland-service-solr_chronix_6.4.2-client</dependency>
 </classpath>
 <argument>com.hurence.logisland.documentation.DocGenerator</argument>
 <argument>-d</argument>
 <argument>${generate-components-dir}</argument>
 <argument>-f</argument>
 <argument>services</argument>
 </arguments>
 </configuration>
 <goals>
 <goal>exec</goal>
 </goals>
</execution>

Will generate documentation for all service specified. You can just add your module in there. Then generate docs with

mvn install -DskipTests

 Plugins

Plugins

In this chapter we will present you how the logisland plugins architecture and how to manage them

Table of Contents

	Plugins

	What’s a plugin?

	How a plugin is packaged

	How about naming?

	Getting started

	List all components

	Install a component

	Remove a component

	Which module contains my component?

	How about the distribution?

What’s a plugin?

A logisland plugin is anything can bring a functionality to logisland.

It can be:

	A processor

	A controller service

	A connector

How a plugin is packaged

A plugin is a jar in the logisland lib folder containing a special manifest giving some information about:

	Exported components

	Versions

	Classloading rules

As well a plugin jar contains every additional dependency is required to make it work with logisland, that ensures the portability with a single file.

How about naming?

When talking about a plugin we talk about an artifact.

Logisland uses the same maven naming convention (groupId, artifactId, version) to locate a plugin.
This ensure a component to be unique and versioned.

Getting started

Everything about plugins is managed through the components.sh client utility (in the bin folder along with logisland.sh command).

Let’s see the main actions you can do with

List all components

Simply use the -l option.

bin/components.sh -l

Listing details for 1 installed modules.
Artifact: com.hurence.logisland:logisland-processor-common:1.0.0
Name: Common processors bundle
Version: 1.0.0
Components provided:
 com.hurence.logisland.processor.AddFields
 com.hurence.logisland.processor.ApplyRegexp
 com.hurence.logisland.processor.ConvertFieldsType
 com.hurence.logisland.processor.DebugStream
 com.hurence.logisland.processor.EvaluateJsonPath
 com.hurence.logisland.processor.FilterRecords
 com.hurence.logisland.processor.FlatMap
 com.hurence.logisland.processor.GenerateRandomRecord
 com.hurence.logisland.processor.ModifyId
 com.hurence.logisland.processor.NormalizeFields
 com.hurence.logisland.processor.ParseProperties
 com.hurence.logisland.processor.RemoveFields
 com.hurence.logisland.processor.SelectDistinctRecords
 com.hurence.logisland.processor.SendMail
 com.hurence.logisland.processor.SplitField
 com.hurence.logisland.processor.SplitText
 com.hurence.logisland.processor.SplitTextMultiline
 com.hurence.logisland.processor.SplitTextWithProperties
 com.hurence.logisland.processor.alerting.CheckAlerts
 com.hurence.logisland.processor.alerting.CheckThresholds
 com.hurence.logisland.processor.alerting.ComputeTags
 com.hurence.logisland.processor.datastore.BulkPut
 com.hurence.logisland.processor.datastore.EnrichRecords
 com.hurence.logisland.processor.datastore.MultiGet

This above is the logisland common processor modules bundled by default in the distribution.

As we can see the command line tell us some nice information:

	The file name

	The version

	The components it provides

Install a component

You can install two things of components:

	A logisland plugin

	A kafka connect source or sink (more information on connectors section)

The generic syntax for both is:

bin/components.sh -i <plugin_artifact>

For instance, if we want to install elasticsearch 5.4 controller service we are going to install the related module called com.hurence.logisland:logisland-service-elasticsearch_5_4_0-client:<logisland_version>

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-client:1.0.0

Downloading dependencies. Please hold on...

Found logisland plugin Elasticsearch 5.4.0 Service Plugin version 1.1.1

It will provide:
 com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_ClientService

Install done!

Remove a component

Just delete the jar on the lib folder or use the components.sh with the -r option.

Example

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-client:1.0.0

Which module contains my component?

You can easily know with module you require to install in case you need a specific component.

The component documentation contains a Module section for each component. It will tell you the artifact you should install.

How about the distribution?

Logisland uses apache ivy [http://ant.apache.org/ivy/] to download the plugins. This allows you to choose the right repository (e.g. a common nexus or an enterprise artifactory) in order to manage and control the dependencies.

You can fine tune this by editing (at your own risks) the ivy.xml file on the conf directory.

 Connectors

Connectors

In this chapter we will present you how to integrate kafka connect connectors into logisland.

Table of Contents

	Connectors

	Introduction

	Prerequisites

	Getting started

	Configuring

	Choosing the right converter

	Putting all together

	Going further

Introduction

Logisland features the integration between kafka connect [https://www.confluent.io/product/connectors/] world and the spark structured streaming engine.

In order to seamlessy integrate both world, we just wrapped out the kafka connectors interfaces (unplugging them from kafka) and let the run in a logisland spark managed container. Hence the name “Logisland Connect” :-)

This allows you to leverage the existing kafka connectors library to import data into a logisland pipeline without having the need to make use of any another middleware or ETL system.

Prerequisites

You can use this functionality only with a spark engine >= 2.1.x

Getting started

In order to use a kafka connect source or sink you have to package and install the required libraries to the logisland lib folder.

Hopefully it can be easily done by using the components.sh tool.

bin/components.sh -i <plugin_artifact>

The plugin artifact should be provided according this format: groupId:artifactId:version where groupId, artifactId and version refer to the maven artifact you’re going to install.

Some examples, with the suggested artifacts to use, in the following table:

	Connector

	URL

	Artifact

	Simulator

	https://github.com/jcustenborder/kafka-connect-simulator

	com.github.jcustenborder.kafka.connect:kafka-connect-simulator:0.1.118

	OPC-DA / OPC-UA (IIoT)

	https://github.com/Hurence/logisland

	com.hurence.logisland:logisland-connector-opc:<logisland_version>

	FTP

	https://github.com/Eneco/kafka-connect-ftp

	com.eneco:kafka-connect-ftp:0.1.4

	Blockchain

	https://github.com/Landoop/stream-reactor/tree/master/kafka-connect-blockchain

	com.datamountaineer:kafka-connect-blockchain:1.1.1

	JMS

	https://github.com/Landoop/stream-reactor/tree/master/kafka-connect-jms

	com.datamountaineer:kafka-connect-jms:1.1.1

	JDBC

	https://docs.confluent.io/current/connect/connect-jdbc/docs/index.html

	io.confluent:kafka-connect-jdbc:5.0.0

Configuring

Once you have bundled the connectors you need, you are now ready to use them.

Let’s do it step by step.

First of all we need to declare a KafkaConnectStructuredSourceProviderService or a KafkaConnectStructuredSinkProviderService that will manage our connector in Logisland.
Along with this we need to put some configuration (In general you can always refer to kafka connect documentation to better understand the underlying architecture and how to configure a connector):

	Property

	Description

	kc.connector.class

	The class of the connector (Fully qualified name)

	kc.data.key.converter

	The class of the converter to be used for the key.
Please refer to Choosing the right converter section

	kc.data.key.converter.properties

	The properties to be provided to the key converter

	kc.data.value.converter

	The class of the converter to be used for the value.
Please refer to Choosing the right converter section

	kc.data.value.converter.properties

	The properties to be provided to the value converter

	kc.connector.properties

	The properties to be provided to the connector and
specific to the connector itself.

	kc.worker.tasks.max

	How many concurrent threads to spawn for a connector

	kc.connector.offset.backing.store

	The offset backing store to use. Choose among:

	memory : standalone in memory

	file : standalone file based.

	kafka : distributed kafka topic based

	kc.connector.offset.backing.store.properties

	
	Specific properties to configure the chosen backing

	store.

Note

Please refer to Kafka connect guide [https://docs.confluent.io/current/connect/userguide.html#running-workers] for further information about offset backing store and how to configure them.

Choosing the right converter

Choosing the right converter is perhaps one of the most important part. In fact we’re going to adapt what is coming from kafka connect to what is flowing into our logisland pipeline.
This means that we have to know how the source is managing its data.

In order to simplify your choice, we recommend you to follow this simple approach (the same applies for both keys and values):

	Source data

	Kafka Converter

	Logisland Encoder

	String

	StringConverter

	StringEncoder

	Raw Bytes

	ByteArrayConverter

	BytesArraySerialiser

	Structured

	LogIslandRecordConverter

	The serializer used by the record
converter (*)

Note

(*)In case you deal with structured data, the LogIslandRecordConverter will embed the structured object in a logisland record. In order to do this you have to specify the serializer to be used to convert your data (the serializer property record.serializer). Generally the KryoSerialiser is a good choice to start with.

Putting all together

In the previous two sections we explained how to configure a connector and how to choose the right serializer for it.

The recap we can examine the following configuration example:

 # Our source service
- controllerService: kc_source_service
 component: com.hurence.logisland.stream.spark.provider.KafkaConnectStructuredSourceProviderService
 documentation: A kafka source connector provider reading from its own source and providing structured streaming to the underlying layer
 configuration:
 # We will use the logisland record converter for both key and value
 kc.data.value.converter: com.hurence.logisland.connect.converter.LogIslandRecordConverter
 # Use kryo to serialize the inner data
 kc.data.value.converter.properties: |
 record.serializer=com.hurence.logisland.serializer.KryoSerializer
 kc.data.key.converter: com.hurence.logisland.connect.converter.LogIslandRecordConverter
 # Use kryo to serialize the inner data
 kc.data.key.converter.properties: |
 record.serializer=com.hurence.logisland.serializer.KryoSerializer
 # Only one task to handle source input (unique)
 kc.worker.tasks.max: 1
 # The kafka source connector to wrap (here we're using a simulator source)
 kc.connector.class: com.github.jcustenborder.kafka.connect.simulator.SimulatorSourceConnector
 # The properties for the connector (as per connector documentation)
 kc.connector.properties: |
 key.schema.fields=email
 topic=simulator
 value.schema.fields=email,firstName,middleName,lastName,telephoneNumber,dateOfBirth
 # We are using a standalone source for testing. We can store processed offsets in memory
 kc.connector.offset.backing.store: memory

In the example both key and value provided by the connector are structured objects.

For this reason we use for that the converter LogIslandRecordConverter.
We provide the serializer to be used for both key and value converter specifying

record.serializer=com.hurence.logisland.serializer.KryoSerializer

among the related converter properties.

Going further

Please do not hesitate to take a look to our kafka connect tutorials for more details and practical use cases.

 Tutorials

Tutorials

Chat with us on Gitter

[image: Gitter]
 [https://gitter.im/logisland/logisland?utm_source=share-link&utm_medium=link&utm_campaign=share-link]Download the latest release build [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

Contents:

	Prerequisites
	1. Trough a Docker container (testing way)

	2. Through an Hadoop cluster (production way)

	Apache logs indexing

	Apache logs indexing with elasticsearch
	1.Install required components

	2. Logisland job setup

	3. Launch the job

	4. Inject some Apache logs into the system

	5. Monitor your spark jobs and Kafka topics

	6. Inspect the logs

	3. Stop the job

	Apache logs indexing with mongo
	1.Install required components

	2. Logisland job setup

	3. Launch the job

	4. Inject some Apache logs into the system

	5. Monitor your spark jobs and Kafka topics

	6. Inspect the logs

	3. Stop the job

	Apache logs indexing with solr
	1.Install required components

	2. Logisland job setup

	3. Launch the job

	4. Inject some Apache logs into the system

	5. Monitor your spark jobs and Kafka topics

	6. Inspect the logs

	3. Stop the job

	Store Apache logs to Redis K/V store
	1. Logisland job setup

	2. Launch the script

	3. Inject some Apache logs into the system

	4. Inspect the logs

	Threshold based alerting on Apache logs with Redis K/V store
	1. Controller service part

	2. First stream : parse logs and compute tags

	3. Second stream : check threshold cross and alerting

	4. Launch the script

	5. Inject some Apache logs into the system

	6. Inspect the logs and alerts

	Alerting & Query Matching
	1.Install required components

	2. Logisland job setup

	3. Launch the script

	4. Inject some Apache logs into the system

	5. Check your alerts with Kibana

	Event aggregation
	1.Install required components

	2. Logisland job setup

	3. Launch the script

	4. Inject some Apache logs into the system

	5. Check your alerts with Kibana

	Index Apache logs Enrichment
	1. Start LogIsland as a Docker container

	2. Inject some Apache logs into the system

	3. Monitor your spark jobs and Kafka topics

	4. Use Kibana to inspect the logs

	Time series sampling & Outliers detection
	1. Setup the time series collection Stream

	2. Setup the Outliers detection Stream

	3. Setup the time series Sampling Stream

	4. Setup the indexing Stream

	4. Start logisland application

	5. Check your alerts with Kibana

	Bro/Logisland integration - Indexing Bro events
	Bro and Logisland

	Tutorial environment

	1. Start the Docker container with LogIsland

	2.Install required components

	3. Transform Bro events into Logisland records

	4. Start the Docker container with Bro

	5. Configure Bro to send events to Kafka

	6. Generate some Bro events and notices

	Netflow/Logisland integration - Handling Netflow traffic
	Netflow and Logisland

	Tutorial environment

	1. Start LogIsland as a Docker container

	2. Configuration steps

	3. Parse Netflow records

	4. Inject Netflow events into the system

	5. Monitor your spark jobs and Kafka topics

	6. Use Kibana to inspect events

	Capturing Network packets in Logisland
	1. Network Packets

	2. Tutorial environment

	3. Start LogIsland as a Docker container

	4. Parse Network Packets

	5. Stream network packets into the system

	6. Monitor your spark jobs and Kafka topics

	7. Use Kibana to inspect records

	Generate Unique Ids
	Stream 1 : parse incoming apache log lines

	Index JMS messages
	1. Installing ActiveMQ

	2. Logisland job setup

	3. Launch the script

	4. Do some insights and visualizations

	5. Monitor your spark jobs and Kafka topics

	Index blockchain transactions
	1. Logisland job setup

	2. Launch the script

	3. Do some insights and visualizations

	4. Monitor your spark jobs and Kafka topics

	Extract Records from Excel File
	1.Install required components

	2. Logisland job setup

	3. Launch the script

	4. Inject an excel file into the system

	5. Inspect the logs

	IIoT with MQTT and Logisland Data-Historian
	1. Logisland job setup

	2. Launch the script

	3. Inject some Apache logs into the system

	4. Monitor your spark jobs and Kafka topics

	5. Inspect the logs

	IIoT with OPC and Logisland
	1.Install required components

	2. Logisland job setup

	3. Launch the script

	4. Inspect the records

	Integrate Kafka Connect Sources & Sinks
	1. Logisland job setup

	2. Launch the script

	3. Examine your console output

	4. Monitor your spark jobs and Kafka topics

	Index JDBC messages
	1.Install required components

	2. Installing H2 datatabase

	3. Logisland job setup

	4. Launch the script

 Prerequisites

Prerequisites

There are two main ways to launch a logisland job :

	within Docker containers

	within an Hadoop distribution (Cloudera, Hortonworks, …)

1. Trough a Docker container (testing way)

Logisland is packaged as a Docker container that you can build yourself or pull from Docker Hub.

To facilitate integration testing and to easily run tutorials, you can use docker-compose with the following docker-compose.yml [https://raw.githubusercontent.com/Hurence/logisland/master/logisland-framework/logisland-resources/src/main/resources/conf/docker-compose.yml].

Once you have this file you can run a docker-compose command to launch all the needed services (zookeeper, kafka, es, kibana and logisland)

Elasticsearch on docker needs a special tweak as described here [https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#docker-cli-run-prod-mode]

set vm.max_map_count kernel setting for elasticsearch
sudo sysctl -w vm.max_map_count=262144

#
cd /tmp
wget https://raw.githubusercontent.com/Hurence/logisland/master/logisland-framework/logisland-resources/src/main/resources/conf/docker-compose.yml
docker-compose up

Note

you should add an entry for sandbox and kafka (with the container ip) in your /etc/hosts as it will be easier to access to all web services in logisland running container.

Any logisland script can now be launched by running a logisland.sh script within the logisland docker container like in the example below where we launch index-apache-logs.yml job :

docker exec -i -t logisland bin/logisland.sh --conf conf/index-apache-logs.yml

2. Through an Hadoop cluster (production way)

Now you have played with the tool, you’re ready to deploy your jobs into a real distributed cluster.
From an edge node of your cluster :

	download and extract the latest release [https://github.com/Hurence/logisland/releases] of logisland

	export SPARK_HOME and HADOOP_CONF_DIR environment variables

	run logisland.sh launcher script with your job conf file.

cd /opt
sudo wget https://github.com/Hurence/logisland/releases/download/v1.1.1/logisland-1.1.1-bin.tar.gz

export SPARK_HOME=/opt/spark-2.1.0-bin-hadoop2.7/
export HADOOP_CONF_DIR=$SPARK_HOME/conf

sudo /opt/logisland-1.1.1/bin/logisland.sh --conf /home/hurence/tom/logisland-conf/v0.10.0/future-factory.yml

 Apache logs indexing

Apache logs indexing

In the following getting started tutorial we’ll drive you through the process of Apache log mining with LogIsland platform.

Note

It is possible to store data in different datastores. In this tutorial, we will see the case of ElasticSearch ,Solr and MongoDb.

	Apache logs indexing into elasticsearch

	Apache logs indexing into solr

	Apache logs indexing into mongodb

 Apache logs indexing with elasticsearch

Apache logs indexing with elasticsearch

In the following getting started tutorial we’ll drive you through the process of Apache log mining with LogIsland platform.
The final data will be stored in elasticsearch

This tutorial is very similar to :

	Apache logs indexing into solr

	Apache logs indexing into mongodb

Note

Please note that you should not launch silmutaneously several docker-compose because we are exposing local port in them. So running several
at the same time would be conflicting. So be sure to have killed all your currently running containers.

1.Install required components

	You either use docker-compose with available docker-compose-index-apache-logs-es.yml file in the tar.gz assembly in the conf folder.

In this case you can skip this section

	Or you can launch the job in your cluster, but in this case you will have to make changes to job conf file so it works in your environment.

In this case please make sure to already have installed elasticsearch modules (depending on which base you will use).

If not you can just do it through the components.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-client:1.1.1

Note

In the following sections we will use docker-compose to run the job. (please install it before pursuing if you are not using your own cluster)

2. Logisland job setup

The logisland job that we will use is ./conf/index-apache-logs-es.yml
The logisland docker-compose file that we will use is ./conf/docker-compose-index-apache-logs-es.yml

We will start by explaining each part of the config file.

An Engine is needed to handle the stream processing. This conf/index-apache-logs-es.yml configuration file defines a stream processing job setup.
The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) to run in local mode with 2 cpu cores and 2G of RAM.

engine:
 component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
 type: engine
 documentation: Index some apache logs with logisland
 configuration:
 spark.app.name: IndexApacheLogsDemo
 spark.master: local[2]
 spark.driver.memory: 1G
 spark.driver.cores: 1
 spark.executor.memory: 2G
 spark.executor.instances: 4
 spark.executor.cores: 2
 spark.yarn.queue: default
 spark.yarn.maxAppAttempts: 4
 spark.yarn.am.attemptFailuresValidityInterval: 1h
 spark.yarn.max.executor.failures: 20
 spark.yarn.executor.failuresValidityInterval: 1h
 spark.task.maxFailures: 8
 spark.serializer: org.apache.spark.serializer.KryoSerializer
 spark.streaming.batchDuration: 1000
 spark.streaming.backpressure.enabled: false
 spark.streaming.unpersist: false
 spark.streaming.blockInterval: 500
 spark.streaming.kafka.maxRatePerPartition: 3000
 spark.streaming.timeout: -1
 spark.streaming.kafka.maxRetries: 3
 spark.streaming.ui.retainedBatches: 200
 spark.streaming.receiver.writeAheadLog.enable: false
 spark.ui.port: 4050

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole job, here an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

- controllerService: elasticsearch_service
 component: com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_ClientService
 type: service
 documentation: elasticsearch service
 configuration:
 hosts: ${ES_HOSTS}
 cluster.name: ${ES_CLUSTER_NAME}
 batch.size: 5000

Note

As you can see it uses environment variable so make sure to set them. (if you use the docker-compose file of this tutorial it is already done for you)

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the logs sent in logisland_raw topic and push the processing output into logisland_events topic.

Note

We want to specify an Avro output schema to validate our ouput records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that converts raw apache logs into structured log records
 configuration:
 kafka.input.topics: logisland_raw
 kafka.output.topics: logisland_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: ${KAFKA_BROKERS}
 kafka.zookeeper.quorum: ${ZK_QUORUM}
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1

Note

As you can see it uses environment variable so make sure to set them. (if you use the docker-compose file of this tutorial it is already done for you)

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of fields.

parse apache logs into logisland records
- processor: apache_parser
 component: com.hurence.logisland.processor.SplitText
 type: parser
 documentation: a parser that produce events from an apache log REGEX
 configuration:
 record.type: apache_log
 value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
 value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,http_status,bytes_out

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will
be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

The second processor will handle Records produced by the SplitText to index them into elasticsearch

all the parsed records are added to elasticsearch by bulk
- processor: es_publisher
 component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
 type: processor
 documentation: a processor that indexes processed events in elasticsearch
 configuration:
 elasticsearch.client.service: elasticsearch_service
 default.index: logisland
 default.type: event
 timebased.index: yesterday
 es.index.field: search_index
 es.type.field: record_type

3. Launch the job

For this tutorial we will handle some apache logs with a splitText parser and send them to Elastiscearch.
Launch your docker container with this command (we suppose you are in the root of the tar gz assembly) :

sudo docker-compose -f ./conf/docker-compose-index-apache-logs-es.yml up -d

Make sure all container are running and that there is no error.

sudo docker-compose ps

Those containers should be visible and running

```
CONTAINER ID        IMAGE                                                 COMMAND                  CREATED             STATUS              PORTS                                                                    NAMES
0d9e02b22c38        docker.elastic.co/kibana/kibana:5.4.0                 “/bin/sh -c /usr/loc…”   13 seconds ago      Up 8 seconds        0.0.0.0:5601->5601/tcp                                                   conf_kibana_1
ab15f4b5198c        docker.elastic.co/elasticsearch/elasticsearch:5.4.0   “/bin/bash bin/es-do…”   13 seconds ago      Up 7 seconds        0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp                           conf_elasticsearch_1
a697e45d2d1a        hurence/logisland:1.1.1                               “tail -f bin/logisla…”   13 seconds ago      Up 9 seconds        0.0.0.0:4050->4050/tcp, 0.0.0.0:8082->8082/tcp, 0.0.0.0:9999->9999/tcp   conf_logisland_1
db80cdf23b45        hurence/zookeeper                                     “/bin/sh -c ‘/usr/sb…”   13 seconds ago      Up 10 seconds       2888/tcp, 3888/tcp, 0.0.0.0:2181->2181/tcp, 7072/tcp                     conf_zookeeper_1
7aa7a87dd16b        hurence/kafka:0.10.2.2-scala-2.11                     “start-kafka.sh”         13 seconds ago      Up 5 seconds        0.0.0.0:9092->9092/tcp                                                   conf_kafka_1

```

sudo docker logs conf_kibana_1
sudo docker logs conf_elasticsearch_1
sudo docker logs conf_logisland_1
sudo docker logs conf_zookeeper_1
sudo docker logs conf_kafka_1

Should not return errors or any suspicious messages

you can now run the job inside the logisland container

sudo docker exec -ti conf_logisland_1 ./bin/logisland.sh --conf ./conf/index-apache-logs-es.yml

The last logs should be something like :

2019-03-19 16:08:47 INFO StreamProcessingRunner:95 - awaitTermination for engine 1
2019-03-19 16:08:47 WARN SparkContext:66 - Using an existing SparkContext; some configuration may not take effect.

4. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

If you don’t have your own httpd logs available, you can use some freely available log files from
NASA-HTTP [http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html] web site access:

	Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz]

	Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz]

	Let’s send the first 500 lines of NASA http access over July 1995 to LogIsland with kafka scripts

	(available in our logisland container) to logisland_raw Kafka topic.

In another terminal run those commands

sudo docker exec -ti conf_logisland_1 bash
cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -n 500 NASA_access_log_Jul95 | ${KAFKA_HOME}/bin/kafka-console-producer.sh --broker-list kafka:9092 --topic logisland_raw

5. Monitor your spark jobs and Kafka topics

Now go to http://localhost:4050/streaming/ to see how fast Spark can process
your data

[image: ../_images/spark-job-monitoring.png]

6. Inspect the logs

Kibana

With ElasticSearch, you can use Kibana. We included one in our docker-compose file.

Open up your browser and go to http://localhost:5601/ [http://localhost:5601/app/kibana#/discover?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:'1995-05-08T12:14:53.216Z',mode:absolute,to:'1995-11-25T05:30:52.010Z'))&_a=(columns:!(_source),filters:!(),index:'li-*',interval:auto,query:(query_string:(analyze_wildcard:!t,query:usa)),sort:!('@timestamp',desc),vis:(aggs:!((params:(field:host,orderBy:'2',size:20),schema:segment,type:terms),(id:'2',schema:metric,type:count)),type:histogram))&indexPattern=li-*&type=histogram] and you should be able to explore your apache logs.

Configure a new index pattern with logisland.* as the pattern name and @timestamp as the time value field.

[image: ../_images/kibana-configure-index.png]
Then if you go to Explore panel for the latest 15’ time window you’ll only see logisland process_metrics events which give you
insights about the processing bandwidth of your streams.

[image: ../_images/kibana-logisland-metrics.png]
As we explore data logs from july 1995 we’ll have to select an absolute time filter from 1995-06-30 to 1995-07-08 to see the events.

[image: ../_images/kibana-apache-logs.png]

3. Stop the job

You can Ctr+c the console where you launched logisland job.
Then to kill all containers used run :

sudo docker-compose -f ./conf/docker-compose-index-apache-logs-es.yml down

Make sure all container have disappeared.

sudo docker ps

 Apache logs indexing with mongo

Apache logs indexing with mongo

In the following getting started tutorial we’ll drive you through the process of Apache log mining with LogIsland platform.
The final data will be stored in mongo

This tutorial is very similar to :

	Apache logs indexing into solr

	Apache logs indexing into elasticsearch

Note

Please note that you should not launch silmutaneously several docker-compose because we are exposing local port in them. So running several
at the same time would be conflicting. So be sure to have killed all your currently running containers.

1.Install required components

	You either use docker-compose with available docker-compose-index-apache-logs-mongo.yml file in the tar.gz assembly in the conf folder.

In this case you can skip this section

	Or you can launch the job in your cluster, but in this case you will have to make changes to job conf file so it works in your environment.

In this case please make sure to already have installed mongo modules (depending on which base you will use).

If not you can just do it through the components.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-service-mongodb-client:1.1.1

Note

In the following sections we will use docker-compose to run the job. (please install it before pursuing if you are not using your own cluster)

2. Logisland job setup

The logisland job that we will use is ./conf/index-apache-logs-mongo.yml
The logisland docker-compose file that we will use is ./conf/docker-compose-index-apache-logs-mongo.yml

We will start by explaining each part of the config file.

An Engine is needed to handle the stream processing. This conf/index-apache-logs-mongo.yml configuration file defines a stream processing job setup.
The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) to run in local mode with 2 cpu cores and 2G of RAM.

engine:
 component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
 type: engine
 documentation: Index some apache logs with logisland
 configuration:
 spark.app.name: IndexApacheLogsDemo
 spark.master: local[2]
 spark.driver.memory: 1G
 spark.driver.cores: 1
 spark.executor.memory: 2G
 spark.executor.instances: 4
 spark.executor.cores: 2
 spark.yarn.queue: default
 spark.yarn.maxAppAttempts: 4
 spark.yarn.am.attemptFailuresValidityInterval: 1h
 spark.yarn.max.executor.failures: 20
 spark.yarn.executor.failuresValidityInterval: 1h
 spark.task.maxFailures: 8
 spark.serializer: org.apache.spark.serializer.KryoSerializer
 spark.streaming.batchDuration: 1000
 spark.streaming.backpressure.enabled: false
 spark.streaming.unpersist: false
 spark.streaming.blockInterval: 500
 spark.streaming.kafka.maxRatePerPartition: 3000
 spark.streaming.timeout: -1
 spark.streaming.kafka.maxRetries: 3
 spark.streaming.ui.retainedBatches: 200
 spark.streaming.receiver.writeAheadLog.enable: false
 spark.ui.port: 4050

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole job,
here an mongo service that will be used later in the TODO processor.

- controllerService: datastore_service
 component: com.hurence.logisland.service.mongodb.MongoDBControllerService
 type: service
 documentation: "Mongo 3.8.0 service"
 configuration:
 mongo.uri: ${MONGO_URI}
 mongo.db.name: logisland
 mongo.collection.name: apache
 # possible values ACKNOWLEDGED, UNACKNOWLEDGED, FSYNCED, JOURNALED, REPLICA_ACKNOWLEDGED, MAJORITY
 mongo.write.concern: ACKNOWLEDGED
 flush.interval: 2000
 batch.size: 100

Note

As you can see it uses environment variable so make sure to set them. (if you use the docker-compose file of this tutorial it is already done for you)

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the logs sent in logisland_raw topic and push the processing output into logisland_events topic.

Note

We want to specify an Avro output schema to validate our ouput records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that converts raw apache logs into structured log records
 configuration:
 kafka.input.topics: logisland_raw
 kafka.output.topics: logisland_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: ${KAFKA_BROKERS}
 kafka.zookeeper.quorum: ${ZK_QUORUM}
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1

Note

As you can see it uses environment variable so make sure to set them. (if you use the docker-compose file of this tutorial it is already done for you)

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of fields.

parse apache logs into logisland records
- processor: apache_parser
 component: com.hurence.logisland.processor.SplitText
 type: parser
 documentation: a parser that produce events from an apache log REGEX
 configuration:
 record.type: apache_log
 value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
 value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,http_status,bytes_out

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will
be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

The second processor will handle Records produced by the SplitText to index them into solr

all the parsed records are added to mongo by bulk
- processor: mongo_publisher

component: com.hurence.logisland.processor.datastore.BulkPut
type: processor
documentation: “indexes processed events in Mongo”
configuration:

datastore.client.service: datastore_service

3. Launch the job

1. Run docker-compose

For this tutorial we will handle some apache logs with a splitText parser and send them to Elastiscearch.
Launch your docker container with this command (we suppose you are in the root of the tar gz assembly) :

sudo docker-compose -f ./conf/docker-compose-index-apache-logs-es.yml up -d

Make sure all container are running and that there is no error.

sudo docker-compose ps

Those containers should be visible and running

```
CONTAINER ID        IMAGE                                                 COMMAND                  CREATED             STATUS              PORTS                                                                    NAMES
0d9e02b22c38        docker.elastic.co/kibana/kibana:5.4.0                 “/bin/sh -c /usr/loc…”   13 seconds ago      Up 8 seconds        0.0.0.0:5601->5601/tcp                                                   conf_kibana_1
ab15f4b5198c        docker.elastic.co/elasticsearch/elasticsearch:5.4.0   “/bin/bash bin/es-do…”   13 seconds ago      Up 7 seconds        0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp                           conf_elasticsearch_1
a697e45d2d1a        hurence/logisland:1.1.1                               “tail -f bin/logisla…”   13 seconds ago      Up 9 seconds        0.0.0.0:4050->4050/tcp, 0.0.0.0:8082->8082/tcp, 0.0.0.0:9999->9999/tcp   conf_logisland_1
db80cdf23b45        hurence/zookeeper                                     “/bin/sh -c ‘/usr/sb…”   13 seconds ago      Up 10 seconds       2888/tcp, 3888/tcp, 0.0.0.0:2181->2181/tcp, 7072/tcp                     conf_zookeeper_1
7aa7a87dd16b        hurence/kafka:0.10.2.2-scala-2.11                     “start-kafka.sh”         13 seconds ago      Up 5 seconds        0.0.0.0:9092->9092/tcp                                                   conf_kafka_1

```

sudo docker logs conf_kibana_1
sudo docker logs conf_elasticsearch_1
sudo docker logs conf_logisland_1
sudo docker logs conf_zookeeper_1
sudo docker logs conf_kafka_1

Should not return errors or any suspicious messages

2. Initializing mongo db

Note

You have to create the db logisland with the collection apache.

open the mongo shell inside mongo container
sudo docker exec -ti conf_mongo_1 mongo

> use logisland
switched to db logisland

> db.apache.insert({src_ip:"19.123.12.67", identd:"-", user:"-", bytes_out:12344, http_method:"POST", http_version:"2.0", http_query:"/logisland/is/so?great=true",http_status:"404" })
WriteResult({ "nInserted" : 1 })

> db.apache.find()

{ “_id” : ObjectId(“5b4f3c4a5561b53b7e862b57”), “src_ip” : “19.123.12.67”, “identd” : “-“, “user” : “-“, “bytes_out” : 12344, “http_method” : “POST”, “http_version” : “2.0”, “http_query” : “/logisland/is/so?great=true”, “http_status” : “404” }

3. Run logisland job

you can now run the job inside the logisland container

sudo docker exec -ti conf_logisland_1 ./bin/logisland.sh --conf ./conf/index-apache-logs-mongo.yml

The last logs should be something like :

2019-03-19 16:08:47 INFO StreamProcessingRunner:95 - awaitTermination for engine 1
2019-03-19 16:08:47 WARN SparkContext:66 - Using an existing SparkContext; some configuration may not take effect.

4. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

If you don’t have your own httpd logs available, you can use some freely available log files from
NASA-HTTP [http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html] web site access:

	Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz]

	Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz]

	Let’s send the first 500 lines of NASA http access over July 1995 to LogIsland with kafka scripts

	(available in our logisland container) to logisland_raw Kafka topic.

In another terminal run those commands

sudo docker exec -ti conf_logisland_1 bash
cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -n 500 NASA_access_log_Jul95 | ${KAFKA_HOME}/bin/kafka-console-producer.sh --broker-list kafka:9092 --topic logisland_raw

5. Monitor your spark jobs and Kafka topics

Now go to http://localhost:4050/streaming/ to see how fast Spark can process
your data

[image: ../_images/spark-job-monitoring.png]

6. Inspect the logs

With mongo you can directly use the shell:

> db.apache.find()

{ “_id” : “507adf3e-3162-4ff0-843a-253e01a6df69”, “src_ip” : “129.94.144.152”, “record_id” : “507adf3e-3162-4ff0-843a-253e01a6df69”, “http_method” : “GET”, “record_value” : “129.94.144.152 - - [01/Jul/1995:00:00:17 -0400] “GET /images/ksclogo-medium.gif HTTP/1.0” 304 0”, “http_query” : “/images/ksclogo-medium.gif”, “bytes_out” : “0”, “identd” : “-“, “http_version” : “HTTP/1.0”, “http_status” : “304”, “record_time” : NumberLong(“804571.1.100”), “user” : “-“, “record_type” : “apache_log” }
{ “_id” : “c44a9d09-52b9-4ada-8126-39c70c90fdd3”, “src_ip” : “ppp-mia-30.shadow.net”, “record_id” : “c44a9d09-52b9-4ada-8126-39c70c90fdd3”, “http_method” : “GET”, “record_value” : “ppp-mia-30.shadow.net - - [01/Jul/1995:00:00:27 -0400] “GET / HTTP/1.0” 200 7074”, “http_query” : “/”, “bytes_out” : “7074”, “identd” : “-“, “http_version” : “HTTP/1.0”, “http_status” : “200”, “record_time” : NumberLong(“804571227000”), “user” : “-“, “record_type” : “apache_log” }
…

3. Stop the job

You can Ctr+c the console where you launched logisland job.
Then to kill all containers used run :

sudo docker-compose -f ./conf/docker-compose-index-apache-logs-es.yml down

Make sure all container have disappeared.

sudo docker ps

 Apache logs indexing with solr

Apache logs indexing with solr

In the following getting started tutorial we’ll drive you through the process of Apache log mining with LogIsland platform.
The final data will be stored in solr

This tutorial is very similar to :

	Apache logs indexing into mongodb

	Apache logs indexing into elasticsearch

Note

Please note that you should not launch silmutaneously several docker-compose because we are exposing local port in them. So running several
at the same time would be conflicting. So be sure to have killed all your currently running containers.

1.Install required components

	You either use docker-compose with available docker-compose-index-apache-logs-es.yml file in the tar.gz assembly in the conf folder.

In this case you can skip this section

	Or you can launch the job in your cluster, but in this case you will have to make changes to job conf file so it works in your environment.

In this case please make sure to already have installed solr modules (depending on which base you will use).

If not you can just do it through the components.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-service-mongodb-client:1.1.1

Note

In the following sections we will use docker-compose to run the job. (please install it before pursuing if you are not using your own cluster)

2. Logisland job setup

The logisland job that we will use is ./conf/index-apache-logs-solr.yml
The logisland docker-compose file that we will use is ./conf/docker-compose-index-apache-logs-solr.yml

We will start by explaining each part of the config file.

An Engine is needed to handle the stream processing. This conf/index-apache-logs-solr.yml configuration file defines a stream processing job setup.
The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) to run in local mode with 2 cpu cores and 2G of RAM.

engine:
 component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
 type: engine
 documentation: Index some apache logs with logisland
 configuration:
 spark.app.name: IndexApacheLogsDemo
 spark.master: local[2]
 spark.driver.memory: 1G
 spark.driver.cores: 1
 spark.executor.memory: 2G
 spark.executor.instances: 4
 spark.executor.cores: 2
 spark.yarn.queue: default
 spark.yarn.maxAppAttempts: 4
 spark.yarn.am.attemptFailuresValidityInterval: 1h
 spark.yarn.max.executor.failures: 20
 spark.yarn.executor.failuresValidityInterval: 1h
 spark.task.maxFailures: 8
 spark.serializer: org.apache.spark.serializer.KryoSerializer
 spark.streaming.batchDuration: 1000
 spark.streaming.backpressure.enabled: false
 spark.streaming.unpersist: false
 spark.streaming.blockInterval: 500
 spark.streaming.kafka.maxRatePerPartition: 3000
 spark.streaming.timeout: -1
 spark.streaming.kafka.maxRetries: 3
 spark.streaming.ui.retainedBatches: 200
 spark.streaming.receiver.writeAheadLog.enable: false
 spark.ui.port: 4050

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole job,
here an Solr service that will be used later in the TODO processor.

Datastore service using Solr 6.6.2 - 5.5.5 also available
- controllerService: datastore_service
 component: com.hurence.logisland.service.solr.Solr_6_6_2_ClientService
 type: service
 documentation: "SolR 6.6.2 service"
 configuration:
 solr.cloud: false
 solr.connection.string: ${SOLR_CONNECTION}
 solr.collection: solr-apache-logs
 solr.concurrent.requests: 4
 flush.interval: 2000
 batch.size: 1000

Note

As you can see it uses environment variable so make sure to set them. (if you use the docker-compose file of this tutorial it is already done for you)

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the logs sent in logisland_raw topic and push the processing output into logisland_events topic.

Note

We want to specify an Avro output schema to validate our ouput records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that converts raw apache logs into structured log records
 configuration:
 kafka.input.topics: logisland_raw
 kafka.output.topics: logisland_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: ${KAFKA_BROKERS}
 kafka.zookeeper.quorum: ${ZK_QUORUM}
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1

Note

As you can see it uses environment variable so make sure to set them. (if you use the docker-compose file of this tutorial it is already done for you)

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of fields.

parse apache logs into logisland records
- processor: apache_parser
 component: com.hurence.logisland.processor.SplitText
 type: parser
 documentation: a parser that produce events from an apache log REGEX
 configuration:
 record.type: apache_log
 value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
 value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,http_status,bytes_out

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will
be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

The second processor will handle Records produced by the SplitText to index them into solr

all the parsed records are added to solr by bulk
- processor: solr_publisher
 component: com.hurence.logisland.processor.datastore.BulkPut
 type: processor
 documentation: "indexes processed events in SolR"
 configuration:
 datastore.client.service: datastore_service

3. Launch the job

1. Run docker-compose

For this tutorial we will handle some apache logs with a splitText parser and send them to Elastiscearch.
Launch your docker container with this command (we suppose you are in the root of the tar gz assembly) :

sudo docker-compose -f ./conf/docker-compose-index-apache-logs-solr.yml up -d

Make sure all container are running and that there is no error.

sudo docker-compose ps

Those containers should be visible and running

```
CONTAINER ID        IMAGE                                                 COMMAND                  CREATED             STATUS              PORTS                                                                    NAMES
0d9e02b22c38        docker.elastic.co/kibana/kibana:5.4.0                 “/bin/sh -c /usr/loc…”   13 seconds ago      Up 8 seconds        0.0.0.0:5601->5601/tcp                                                   conf_kibana_1
ab15f4b5198c        docker.elastic.co/elasticsearch/elasticsearch:5.4.0   “/bin/bash bin/es-do…”   13 seconds ago      Up 7 seconds        0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp                           conf_elasticsearch_1
a697e45d2d1a        hurence/logisland:1.1.1                               “tail -f bin/logisla…”   13 seconds ago      Up 9 seconds        0.0.0.0:4050->4050/tcp, 0.0.0.0:8082->8082/tcp, 0.0.0.0:9999->9999/tcp   conf_logisland_1
db80cdf23b45        hurence/zookeeper                                     “/bin/sh -c ‘/usr/sb…”   13 seconds ago      Up 10 seconds       2888/tcp, 3888/tcp, 0.0.0.0:2181->2181/tcp, 7072/tcp                     conf_zookeeper_1
7aa7a87dd16b        hurence/kafka:0.10.2.2-scala-2.11                     “start-kafka.sh”         13 seconds ago      Up 5 seconds        0.0.0.0:9092->9092/tcp                                                   conf_kafka_1

```

sudo docker logs conf_kibana_1
sudo docker logs conf_elasticsearch_1
sudo docker logs conf_logisland_1
sudo docker logs conf_zookeeper_1
sudo docker logs conf_kafka_1

Should not return errors or any suspicious messages

2. Initializing solr db

We will now set up our solr database. First create the ‘solr-apache-logs’ collection

sudo docker exec -it --user=solr conf_solr_1 bin/solr create_core -c solr-apache-logs

	The core/collection should have thos fields (corresponding to apache logs parsed fields)src_ip, identd, user, bytes_out,

	http_method, http_version, http_query, http_status

Otherwise for simplicity you can add a dynamic field called ‘*’ and of type string for this collection with the web ui :
http://localhost:8983/solr

Select the solr-apache-logs collection, go to schema and add your fields.

3. Run logisland job

you can now run the job inside the logisland container

sudo docker exec -ti conf_logisland_1 ./bin/logisland.sh --conf ./conf/index-apache-logs-solr.yml

The last logs should be something like :

2019-03-19 16:08:47 INFO StreamProcessingRunner:95 - awaitTermination for engine 1
2019-03-19 16:08:47 WARN SparkContext:66 - Using an existing SparkContext; some configuration may not take effect.

4. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

If you don’t have your own httpd logs available, you can use some freely available log files from
NASA-HTTP [http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html] web site access:

	Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz]

	Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz]

	Let’s send the first 500 lines of NASA http access over July 1995 to LogIsland with kafka scripts

	(available in our logisland container) to logisland_raw Kafka topic.

In another terminal run those commands

sudo docker exec -ti conf_logisland_1 bash
cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -n 500 NASA_access_log_Jul95 | ${KAFKA_HOME}/bin/kafka-console-producer.sh --broker-list kafka:9092 --topic logisland_raw

The logisland job should output logs, verify that there is no error, otherwise there is chances that your solr collection is not well configured.

5. Monitor your spark jobs and Kafka topics

Now go to http://localhost:4050/streaming/ to see how fast Spark can process
your data

[image: ../_images/spark-job-monitoring.png]

6. Inspect the logs

With Solr, you can directly use the solr web ui.

Open up your browser and go to http://localhost:8983/solr and you should be able to view your apache logs.

In non cloud mode, use the core selector, to select the core `solr-apache-logs` :

[image: ../_images/solr-dashboard.png]
Then, go to query and by clicking to Execute Query, you will see some data from your Apache logs :

[image: ../_images/solr-query.png]

3. Stop the job

You can Ctr+c the console where you launched logisland job.
Then to kill all containers used run :

sudo docker-compose -f ./conf/docker-compose-index-apache-logs-solr.yml down

Make sure all container have disappeared.

sudo docker ps

 Store Apache logs to Redis K/V store

Store Apache logs to Redis K/V store

In the following getting started tutorial we’ll drive you through the process of Apache log mining with LogIsland platform.

Note

Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

Note, it is possible to store data in different datastores. In this tutorial, we will see the case of Redis, if you need more in-depth explanations you can read the previous tutorial on indexing apache logs to elasticsearch or solr : `index-apache-logs.html`_ .

1. Logisland job setup

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here :

docker exec -i -t logisland vim conf/store-to-redis.yml

We will start by explaining each part of the config file.

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole job, here a Redis KV cache service that will be used later in the BulkPut processor.

- controllerService: datastore_service
 component: com.hurence.logisland.redis.service.RedisKeyValueCacheService
 type: service
 documentation: redis datastore service
 configuration:
 connection.string: localhost:6379
 redis.mode: standalone
 database.index: 0
 communication.timeout: 10 seconds
 pool.max.total: 8
 pool.max.idle: 8
 pool.min.idle: 0
 pool.block.when.exhausted: true
 pool.max.wait.time: 10 seconds
 pool.min.evictable.idle.time: 60 seconds
 pool.time.between.eviction.runs: 30 seconds
 pool.num.tests.per.eviction.run: -1
 pool.test.on.create: false
 pool.test.on.borrow: false
 pool.test.on.return: false
 pool.test.while.idle: true
 record.recordSerializer: com.hurence.logisland.serializer.JsonSerializer

Here the stream will read all the logs sent in logisland_raw topic and push the processing output into logisland_events topic.

Note

We want to specify an Avro output schema to validate our ouput records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that converts raw apache logs into structured log records
 configuration:
 kafka.input.topics: logisland_raw
 kafka.output.topics: logisland_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of fields.

parse apache logs
- processor: apache_parser
 component: com.hurence.logisland.processor.SplitText
 type: parser
 documentation: a parser that produce events from an apache log REGEX
 configuration:
 value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
 value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,http_status,bytes_out

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will
be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

The second processor will handle Records produced by the SplitText to index them into datastore previously defined (Redis)

all the parsed records are added to datastore by bulk
- processor: datastore_publisher
 component: com.hurence.logisland.processor.datastore.BulkPut
 type: processor
 documentation: "indexes processed events in datastore"
 configuration:
 datastore.client.service: datastore_service

2. Launch the script

For this tutorial we will handle some apache logs with a splitText parser and send them to Redis
Connect a shell to your logisland container to launch the following streaming jobs.

For ElasticSearch :

docker exec -i -t logisland bin/logisland.sh --conf conf/store-to-redis.yml

3. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic
but there’s a super useful tool in the Kafka ecosystem : kafkacat [https://github.com/edenhill/kafkacat],
a generic command line non-JVM Apache Kafka producer and consumer which can be easily installed.

If you don’t have your own httpd logs available, you can use some freely available log files from
NASA-HTTP [http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html] web site access:

	Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz]

	Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz]

Let’s send the first 500000 lines of NASA http access over July 1995 to LogIsland with kafkacat to logisland_raw Kafka topic

cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -500000 NASA_access_log_Jul95 | kafkacat -b sandbox:9092 -t logisland_raw

4. Inspect the logs

For this part of the tutorial we will use redis-py a Python client for Redis [https://redis-py.readthedocs.io/en/latest/]. You can install it by following instructions given on redis-py.

To install redis-py, simply:

$ sudo pip install redis

Getting Started, check if you can connect with Redis

>>> import redis
>>> r = redis.StrictRedis(host='localhost', port=6379, db=0)
>>> r.set('foo', 'bar')
>>> r.get('foo')

Then we want to grab some logs that have been collected to Redis. We first find some keys with a pattern and get the json content of one

>>> r.keys('1234*')

[‘123493eb-93df-4e57-a1c1-4a8e844fa92c’, ‘123457d5-8ccc-4f0f-b4ba-d70967aa48eb’, ‘12345e06-6d72-4ce8-8254-a7cc4bab5e31’]

>>> r.get('123493eb-93df-4e57-a1c1-4a8e844fa92c')

‘{n “id” : “123493eb-93df-4e57-a1c1-4a8e844fa92c”,n “type” : “apache_log”,n “creationDate” : 804574829000,n “fields” : {n “src_ip” : “204.191.209.4”,n “record_id” : “123493eb-93df-4e57-a1c1-4a8e844fa92c”,n “http_method” : “GET”,n “http_query” : “/images/WORLD-logosmall.gif”,n “bytes_out” : “669”,n “identd” : “-“,n “http_version” : “HTTP/1.0”,n “record_raw_value” : “204.191.209.4 - - [01/Jul/1995:01:00:29 -0400] "GET /images/WORLD-logosmall.gif HTTP/1.0" 200 669”,n “http_status” : “200”,n “record_time” : 804574829000,n “user” : “-“,n “record_type” : “apache_log”n }n}’

>>> import json
>>> record = json.loads(r.get('123493eb-93df-4e57-a1c1-4a8e844fa92c'))
>>> record['fields']['bytes_out']

 Threshold based alerting on Apache logs with Redis K/V store

Threshold based alerting on Apache logs with Redis K/V store

In a previous tutorial we saw how to use Redis K/V store as a cache storage. In this one we will practice the use of
ComputeTag, CheckThresholds and CheckAlerts processor in conjunction with this Redis Cache.

The following job is made of 2 streaming parts :

	A main stream which parses Apache logs and store them to a Redis cache .

	A timer based stream which compute some new tags values based on cached records, check some thresholds cross and send alerts if needed.

Note

Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

The full logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here :

docker exec -i -t conf_logisland_1 vim conf/threshold-alerting.yml

We will start by explaining each part of the config file.

1. Controller service part

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole job, here a Redis KV cache service that will be used later in the BulkPut processor.

- controllerService: datastore_service
 component: com.hurence.logisland.redis.service.RedisKeyValueCacheService
 type: service
 documentation: redis datastore service
 configuration:
 connection.string: localhost:6379
 redis.mode: standalone
 database.index: 0
 communication.timeout: 10 seconds
 pool.max.total: 8
 pool.max.idle: 8
 pool.min.idle: 0
 pool.block.when.exhausted: true
 pool.max.wait.time: 10 seconds
 pool.min.evictable.idle.time: 60 seconds
 pool.time.between.eviction.runs: 30 seconds
 pool.num.tests.per.eviction.run: -1
 pool.test.on.create: false
 pool.test.on.borrow: false
 pool.test.on.return: false
 pool.test.while.idle: true
 record.recordSerializer: com.hurence.logisland.serializer.JsonSerializer

2. First stream : parse logs and compute tags

Here the stream will read all the logs sent in logisland_raw topic and push the processing output into logisland_events topic as Json serialized records.

- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that converts raw apache logs into structured log records
 configuration:
 kafka.input.topics: logisland_raw
 kafka.output.topics: logisland_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of fields.

- processor: apache_parser
 component: com.hurence.logisland.processor.SplitText
 type: parser
 documentation: a parser that produce events from an apache log REGEX
 configuration:
 value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
 value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,http_status,bytes_out

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will
be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

the next processing step is to assign bytes_out field as record_value

- processor: normalize_fields
 component: com.hurence.logisland.processor.NormalizeFields
 type: parser
 documentation: change field name 'bytes_out' to `record_value`
 configuration:
 conflict.resolution.policy: overwrite_existing
 record_value: bytes_out

the we modify record_id to set its value as src_ip field.

- processor: modify_id
 component: com.hurence.logisland.processor.ModifyId
 type: parser
 documentation: change current id to src_ip
 configuration:
 id.generation.strategy: fromFields
 fields.to.hash: src_ip
 java.formatter.string: "%1$s"

now we’ll remove all the unwanted fields

- processor: remove_fields
 component: com.hurence.logisland.processor.RemoveFields
 type: parser
 documentation: remove useless fields
 configuration:
 fields.to.remove: src_ip,identd,user,http_method,http_query,http_version,http_status,bytes_out

and then cast record_value as a double

- processor: cast
 component: com.hurence.logisland.processor.ConvertFieldsType
 type: parser
 documentation: cast values
 configuration:
 record_value: double

The next processing step wil compute a dynamic Tag value from a Javascript expression.
Here a new record with an record_id set to computed1 and as a record_value the resulting expression of cache(“logisland.hurence.com”).value * 10.2

- processor: compute_tag
 component: com.hurence.logisland.processor.alerting.ComputeTags
 type: processor
 documentation: |
 compute tags from given formulas.
 each dynamic property will return a new record according to the formula definition
 the record name will be set to the property name
 the record time will be set to the current timestamp
 configuration:
 datastore.client.service: datastore_service
 output.record.type: computed_tag
 max.cpu.time: 500
 max.memory: 64800000
 max.prepared.statements: 5
 allow.no.brace: false
 computed1: return cache("logisland.hurence.com").value * 10.2;

The last processor will handle all the Records of this stream to index them into datastore previously defined (Redis)

all the parsed records are added to datastore by bulk
- processor: datastore_publisher
 component: com.hurence.logisland.processor.datastore.BulkPut
 type: processor
 documentation: "indexes processed events in datastore"
 configuration:
 datastore.client.service: datastore_service

3. Second stream : check threshold cross and alerting

The second stream will read all the logs sent in logisland_events topic and push the processed outputs (threshold_cross & alerts records) into logisland_alerts topic as Json serialized records.

We won’t comment the stream definition as it is really straightforward.

The first processor of this stream pipeline makes use of CheckThresholds component which will add a new record of type threshold_cross with a record_id set to threshold1 if the JS expression cache(“computed1”).value > 2000.0 is evaluated to true.

- processor: compute_thresholds
 component: com.hurence.logisland.processor.alerting.CheckThresholds
 type: processor
 documentation: |
 compute threshold cross from given formulas.
 each dynamic property will return a new record according to the formula definition
 the record name will be set to the property name
 the record time will be set to the current timestamp

 a threshold_cross has the following properties : count, time, duration, value
 configuration:
 datastore.client.service: datastore_service
 output.record.type: threshold_cross
 max.cpu.time: 100
 max.memory: 12800000
 max.prepared.statements: 5
 record.ttl: 300000
 threshold1: cache("computed1").value > 2000.0

- processor: compute_alerts1
 component: com.hurence.logisland.processor.alerting.CheckAlerts
 type: processor
 documentation: |
 compute threshold cross from given formulas.
 each dynamic property will return a new record according to the formula definition
 the record name will be set to the property name
 the record time will be set to the current timestamp
 configuration:
 datastore.client.service: datastore_service
 output.record.type: medium_alert
 alert.criticity: 1
 max.cpu.time: 100
 max.memory: 12800000
 max.prepared.statements: 5
 profile.activation.condition: cache("threshold1").value > 3000.0
 alert1: cache("threshold1").duration > 50.0

The last processor will handle all the Records of this stream to index them into datastore previously defined (Redis)

- processor: datastore_publisher
 component: com.hurence.logisland.processor.datastore.BulkPut
 type: processor
 documentation: "indexes processed events in datastore"
 configuration:
 datastore.client.service: datastore_service

4. Launch the script

Connect a shell to your logisland container to launch the following streaming jobs.

docker exec -i -t conf_logisland_1 bin/logisland.sh --conf conf/threshold-alerting.yml

5. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic
but there’s a super useful tool in the Kafka ecosystem : kafkacat [https://github.com/edenhill/kafkacat],
a generic command line non-JVM Apache Kafka producer and consumer which can be easily installed.

If you don’t have your own httpd logs available, you can use some freely available log files from
NASA-HTTP [http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html] web site access:

	Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz]

	Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz]

Let’s send the first 500000 lines of NASA http access over July 1995 to LogIsland with kafkacat to logisland_raw Kafka topic

cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -500000 NASA_access_log_Jul95 | kafkacat -b sandbox:9092 -t logisland_raw

6. Inspect the logs and alerts

For this part of the tutorial we will use redis-py a Python client for Redis [https://redis-py.readthedocs.io/en/latest/]. You can install it by following instructions given on redis-py.

To install redis-py, simply:

$ sudo pip install redis

Getting Started, check if you can connect with Redis

>>> import redis
>>> r = redis.StrictRedis(host='localhost', port=6379, db=0)
>>> r.set('foo', 'bar')
>>> r.get('foo')

Then we want to grab some logs that have been collected to Redis. We first find some keys with a pattern and get the json content of one

>>> r.keys('1234*')

[‘123493eb-93df-4e57-a1c1-4a8e844fa92c’, ‘123457d5-8ccc-4f0f-b4ba-d70967aa48eb’, ‘12345e06-6d72-4ce8-8254-a7cc4bab5e31’]

>>> r.get('123493eb-93df-4e57-a1c1-4a8e844fa92c')

‘{n “id” : “123493eb-93df-4e57-a1c1-4a8e844fa92c”,n “type” : “apache_log”,n “creationDate” : 804574829000,n “fields” : {n “src_ip” : “204.191.209.4”,n “record_id” : “123493eb-93df-4e57-a1c1-4a8e844fa92c”,n “http_method” : “GET”,n “http_query” : “/images/WORLD-logosmall.gif”,n “bytes_out” : “669”,n “identd” : “-“,n “http_version” : “HTTP/1.0”,n “record_raw_value” : “204.191.209.4 - - [01/Jul/1995:01:00:29 -0400] "GET /images/WORLD-logosmall.gif HTTP/1.0" 200 669”,n “http_status” : “200”,n “record_time” : 804574829000,n “user” : “-“,n “record_type” : “apache_log”n }n}’

>>> import json
>>> record = json.loads(r.get('123493eb-93df-4e57-a1c1-4a8e844fa92c'))
>>> record['fields']['bytes_out']

 Alerting & Query Matching

Alerting & Query Matching

In the following tutorial we’ll learn how to raise custom alerts on some http traffic (apache log records) based on lucene matching query criterion.

We assume that you already know how to parse and ingest Apache logs into logisland.
If it’s not the case please refer to the previous Apache logs indexing tutorial.
We will use mainly the MatchQuery Processor.

Note

Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

1.Install required components

For this tutorial please make sure to already have installed elasticsearch modules.

If not you can just do it through the components.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-client:1.1.1

2. Logisland job setup

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here :

docker exec -i -t logisland vim conf/match-queries.yml

We will start by explaining each part of the config file.

The stream contains two processors quite identical (the first one converts raw logs to records and the second one index records to ES) to those encountered in the previous Apache logs indexing tutorial tutorial .

The third one makes use of the MatchQuery Processor. This processor provides user with dynamic query registration.
This queries are expressed in the Lucene syntax.

Note

Please read the Lucene syntax guide [https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description] for supported operations.

This processor will tag the record with blacklisted_host field if the query src_ip:(+alyssa +prodigy) matches and tag montana_host if src_ip:montana

- processor: match_query
 component: com.hurence.logisland.processor.MatchQuery
 type: processor
 documentation: a parser that matches lucene queries on records
 configuration:
 policy.onmiss: forward
 policy.onmatch: all
 blacklisted_host: src_ip:(+alyssa +prodigy)
 montana_host: src_ip:montana

here is an example of matching record :

{
 "@timestamp": "1995-07-01T09:02:18+02:00",
 "alert_match_name": [
 "montana_host"
],
 "alert_match_query": [
 "src_ip:montana"
],
 "bytes_out": "8677",
 "http_method": "GET",
 "http_query": "/shuttle/missions/missions.html",
 "http_status": "200",
 "http_version": "HTTP/1.0",
 "identd": "-",
 "record_id": "8e861956-af54-49fd-9043-94c143fc5a19",
 "record_raw_value": "ril.usda.montana.edu - - [01/Jul/1995:03:02:18 -0400] \"GET /shuttle/missions/missions.html HTTP/1.0\" 200 8677",
 "record_time": 804582138000,
 "record_type": "apache_log",
 "src_ip": "ril.usda.montana.edu",
 "user": "-"
 }

3. Launch the script

For this tutorial we will handle some apache logs with a splitText parser and send them to Elastiscearch
Connect a shell to your logisland container to launch the following streaming jobs.

docker exec -i -t logisland bin/logisland.sh --conf conf/match-queries.yml

4. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic
but there’s a super useful tool in the Kafka ecosystem : kafkacat [https://github.com/edenhill/kafkacat],
a generic command line non-JVM Apache Kafka producer and consumer which can be easily installed.

If you don’t have your own httpd logs available, you can use some freely available log files from
NASA-HTTP [http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html] web site access:

	Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz]

	Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz]

Let’s send the first 500000 lines of NASA http access over July 1995 to LogIsland with kafkacat to logisland_raw Kafka topic

cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -500000 NASA_access_log_Jul95 | kafkacat -b sandbox:9092 -t logisland_raw

5. Check your alerts with Kibana

Check that you’ve match some criterias :

curl -XGET http://localhost:9200/logisland.2017.10.17/_search?pretty&q=alert_match_name:montana_host
curl -XGET http://localhost:9200/logisland.2017.10.17/_search?pretty&q=alert_match_name:blacklisted_host

Open up your browser and go to http://sandbox:5601/ [http://sandbox:5601/app/kibana#/discover] and you should be able to explore your apache logs.

by adding filter on alert_match_name:blacklisted_host you’ll only get request from alyssa.prodigy.com which is a host we where monitoring.

[image: ../_images/kibana-match-queries.png]

 Event aggregation

Event aggregation

In the following tutorial we’ll learn how to generate time window metrics on some http traffic (apache log records) and
how to raise custom alerts based on lucene matching query criterion.

We assume that you already know how to parse and ingest Apache logs into logisland.
If it’s not the case please refer to the previous Apache logs indexing tutorial.
We will first add an SQLAggregator Stream
to compute some metrics and then add a MatchQuery Processor.

Note

Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

1.Install required components

For this tutorial please make sure to already have installed elasticsearch modules. If not you can just
do it through the componentes.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-client:1.1.1

2. Logisland job setup

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here :

docker exec -i -t logisland vim conf/aggregate-events.yml

We will start by explaining each part of the config file.

Our application will be composed of 4 streams :

The first one converts apache logs to typed records (please note the use of ConvertFieldsType processor)

The second one is the sql stream is a special one one use a KafkaRecordStreamSQLAggregator.
This stream defines input/output topics names as well as Serializers, avro schema.

Note

The Avro [http://avro.apache.org/docs/1.7.7/spec.html] schema is set for the input topic and must be same as the avro schema of the output topic for the stream that
produces the records (please refer to Index Apache logs tutorial

The most important part of the KafkaRecordStreamSQLAggregator is its sql.query property which defines
a query to apply on the incoming records for the given time window.

The following SQL query will be applied on sliding window of 10” of records.

SELECT count(*) AS connections_count, avg(bytes_out) AS avg_bytes_out, src_ip, first(record_time) as record_time
FROM logisland_events
GROUP BY src_ip
ORDER BY connections_count DESC
LIMIT 20

which will consider logisland_events topic as SQL table and create 20 output Record with the fields avg_bytes_out, src_ip & record_time.
the statement with record_time will ensure that the created Records will correspond to the effective input event time (not the actual time).

- stream: metrics_by_host
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamSQLAggregator
 type: stream
 documentation: a processor that links
 configuration:
 kafka.input.topics: logisland_events
 kafka.output.topics: logisland_aggregations
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 window.duration: 10
 avro.input.schema: >
 { "version":1,
 "type": "record",
 "name": "com.hurence.logisland.record.apache_log",
 "fields": [
 { "name": "record_errors", "type": [{"type": "array", "items": "string"},"null"] },
 { "name": "record_raw_key", "type": ["string","null"] },
 { "name": "record_raw_value", "type": ["string","null"] },
 { "name": "record_id", "type": ["string"] },
 { "name": "record_time", "type": ["long"] },
 { "name": "record_type", "type": ["string"] },
 { "name": "src_ip", "type": ["string","null"] },
 { "name": "http_method", "type": ["string","null"] },
 { "name": "bytes_out", "type": ["long","null"] },
 { "name": "http_query", "type": ["string","null"] },
 { "name": "http_version","type": ["string","null"] },
 { "name": "http_status", "type": ["string","null"] },
 { "name": "identd", "type": ["string","null"] },
 { "name": "user", "type": ["string","null"] }]}
 sql.query: >
 SELECT count(*) AS connections_count, avg(bytes_out) AS avg_bytes_out, src_ip
 FROM logisland_events
 GROUP BY src_ip
 ORDER BY event_count DESC
 LIMIT 20
 max.results.count: 1000
 output.record.type: top_client_metrics

Here we will compute every x seconds, the top twenty src_ip for connections count.
The result of the query will be pushed into to logisland_aggregations topic as new top_client_metrics Record containing connections_count and avg_bytes_out fields.

the third match some criteria to send some alerts

- processor: match_query
 component: com.hurence.logisland.processor.MatchQuery
 type: processor
 documentation: a parser that produce alerts from lucene queries
 configuration:
 numeric.fields: bytes_out,connections_count
 too_much_bandwidth: avg_bytes_out:[25000 TO 5000000]
 too_many_connections: connections_count:[150 TO 300]
 output.record.type: threshold_alert

3. Launch the script

For this tutorial we will handle some apache logs with a splitText parser and send them to Elastiscearch
Connect a shell to your logisland container to launch the following streaming jobs.

docker exec -i -t logisland bin/logisland.sh --conf conf/aggregate-events.yml

4. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic
but there’s a super useful tool in the Kafka ecosystem : kafkacat [https://github.com/edenhill/kafkacat],
a generic command line non-JVM Apache Kafka producer and consumer which can be easily installed.

If you don’t have your own httpd logs available, you can use some freely available log files from
NASA-HTTP [http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html] web site access:

	Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz]

	Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz]

Let’s send the first 500000 lines of NASA http access over July 1995 to LogIsland with kafkacat to logisland_raw Kafka topic

cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -500000 NASA_access_log_Jul95 | kafkacat -b sandbox:9092 -t logisland_raw

5. Check your alerts with Kibana

As we explore data logs from july 1995 we’ll have to select an absolute time filter from 1995-06-30 to 1995-07-08 to see the events.

[image: ../_images/kibana-logisland-aggregates-events.png]
you can filter your events with record_type:connection_alert to get 71733 connections alerts matching your query

[image: ../_images/kibana-blacklisted-host.png]
if we filter now on threshold alerts whith record_type:threshold_alert you’ll get the 13 src_ip that have been catched by the threshold query.

[image: ../_images/kibana-threshold-alerts.png]

 Index Apache logs Enrichment

Index Apache logs Enrichment

In the following tutorial we’ll drive you through the process of enriching Apache logs with LogIsland platform.

One of the first steps when treating web access logs is to extract information from the User-Agent header string, in order to be able to classify traffic.
The User-Agent string is part of the access logs from the web server (this is the last field in the example below).

Another step is to find the FQDN (full qualified domain name) from an ip address.

That string is packed with information from the visitor, when you know how to interpret it. However, the User-Agent string is not based on any standard, and it is not trivial to extract meaningful information from it.
LogIsland provides a processor, based on the YAUAA library [http://github.com/nielsbasjes/yauaa], that simplifies that treatement.

LogIsland provides a processor, based on InetAdress class from JDK 8 [https://docs.oracle.com/javase/8/docs/api/java/net/InetAddress.html], that use reverse Dns to determine FQDN from an IP.

Note

This class find FQDN from ip using IN-ADDR.ARPA (or IP6.ARPA for ipv6). If it finds a domain name, it verifies that it matches back the same address ip in order to prevent against IP spoofing attack [https://en.wikipedia.org/wiki/IP_address_spoofing].
If you want to return the ip anyway, you should implement a new plugin using another library as dnsjava for example or open an issue for asking this feature.

We will reuse the Docker container hosting all the LogIsland services from the previous tutorial, and add the User-Agent as well as the IpToFqdn processor to the stream

Note

You can download the latest release [https://github.com/Hurence/logisland/releases] of logisland and the YAML configuration file [https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/user-agent-logs.yml] for this tutorial which can be also found under $LOGISLAND_HOME/conf directory.

1. Start LogIsland as a Docker container

LogIsland is packaged as a Docker container that you can build yourself or pull from Docker Hub.

You can find the steps to start the Docker image and start the LogIsland server in the previous tutorial.
However, you’ll start the server with a different configuration file (that already includes the necessary modifications)

Install required components

For this tutorial please make sure to already have installed required modules.

If not you can just do it through the components.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_2_4_0-client:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-processor-enrichment:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-processor-useragent:1.1.1

Stream 1 : modify the stream to analyze the User-Agent string

Note

You can either apply the modifications from this section to the file conf/index-apache-logs.yml ot directly use the file conf/enrich-apache-logs.yml that already includes them.

The stream needs to be modified to

* modify the regex to add the referer and the User-Agent strings for the SplitText processor
* modify the Avro schema to include the new fields returned by the UserAgentProcessor
* include the processing of the User-Agent string after the parsing of the logs
* include the processor IpToFqdn after the ParserUserAgent
* include a cache service to use with IpToFqdn processor

The example below shows how to include all of the fields supported by the processor.

Note

It is possible to remove unwanted fields from both the processor configuration and the Avro schema

Once the configuration file is updated, LogIsland must be restarted with that new configuration file.

bin/logisland.sh --conf <new_configuration_file>

2. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic
but there’s a super useful tool in the Kafka ecosystem : kafkacat [https://github.com/edenhill/kafkacat],
a generic command line non-JVM Apache Kafka producer and consumer which can be easily installed (and is already present in the docker image).

If you don’t have your own httpd logs available, you can use some freely available log files from
Elastic [https://raw.githubusercontent.com/elastic/examples/master/ElasticStack_apache/apache_logs] web site

Let’s send the first 500000 lines of access log to LogIsland with kafkacat to logisland_raw Kafka topic

docker exec -ti logisland bash
cd /tmp
wget https://raw.githubusercontent.com/elastic/examples/master/ElasticStack_apache/apache_logs
head -500000 apache_logs | kafkacat -b sandbox:9092 -t logisland_raw

Note

The process should last around 280 seconds because reverse dns is a costly operation.
After all data are processed, you can inject the same logs again and it should be very fast to process thanks to the cache that saved all matched ip.

3. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process
your data

[image: ../_images/spark-job-monitoring.png]
Another tool can help you to tweak and monitor your processing http://sandbox:9000/

[image: ../_images/kafka-mgr.png]

4. Use Kibana to inspect the logs

You’ve completed the enrichment of your logs using the User-Agent processor.
The logs are now loaded into elasticSearch, in the following form :

curl -XGET http://localhost:9200/logisland.*/_search?pretty

{

 "_index": "logisland.2017.03.21",
 "_type": "apache_log",
 "_id": "4ca6a8b5-1a60-421e-9ae9-6c30330e497e",
 "_score": 1.0,
 "_source": {
 "@timestamp": "2015-05-17T10:05:43Z",
 "agentbuild": "Unknown",
 "agentclass": "Browser",
 "agentinformationemail": "Unknown",
 "agentinformationurl": "Unknown",
 "agentlanguage": "Unknown",
 "agentlanguagecode": "Unknown",
 "agentname": "Chrome",
 "agentnameversion": "Chrome 32.0.1700.77",
 "agentnameversionmajor": "Chrome 32",
 "agentsecurity": "Unknown",
 "agentuuid": "Unknown",
 "agentversion": "32.0.1700.77",
 "agentversionmajor": "32",
 "anonymized": "Unknown",
 "devicebrand": "Apple",
 "deviceclass": "Desktop",
 "devicecpu": "Intel",
 "devicefirmwareversion": "Unknown",
 "devicename": "Apple Macintosh",
 "deviceversion": "Unknown",
 "facebookcarrier": "Unknown",
 "facebookdeviceclass": "Unknown",
 "facebookdevicename": "Unknown",
 "facebookdeviceversion": "Unknown",
 "facebookfbop": "Unknown",
 "facebookfbss": "Unknown",
 "facebookoperatingsystemname": "Unknown",
 "facebookoperatingsystemversion": "Unknown",
 "gsainstallationid": "Unknown",
 "hackerattackvector": "Unknown",
 "hackertoolkit": "Unknown",
 "iecompatibilitynameversion": "Unknown",
 "iecompatibilitynameversionmajor": "Unknown",
 "iecompatibilityversion": "Unknown",
 "iecompatibilityversionmajor": "Unknown",
 "koboaffiliate": "Unknown",
 "koboplatformid": "Unknown",
 "layoutenginebuild": "Unknown",
 "layoutengineclass": "Browser",
 "layoutenginename": "Blink",
 "layoutenginenameversion": "Blink 32.0",
 "layoutenginenameversionmajor": "Blink 32",
 "layoutengineversion": "32.0",
 "layoutengineversionmajor": "32",
 "operatingsystemclass": "Desktop",
 "operatingsystemname": "Mac OS X",
 "operatingsystemnameversion": "Mac OS X 10.9.1",
 "operatingsystemversion": "10.9.1",
 "operatingsystemversionbuild": "Unknown",
 "webviewappname": "Unknown",
 "webviewappnameversionmajor": "Unknown",
 "webviewappversion": "Unknown",
 "webviewappversionmajor": "Unknown",
 "bytes_out": 171717,
 "http_method": "GET",
 "http_query": "/presentations/logstash-monitorama-2013/images/kibana-dashboard3.png",
 "http_referer": "http://semicomplete.com/presentations/logstash-monitorama-2013/",
 "http_status": "200",
 "http_user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36",
 "http_version": "HTTP/1.1",
 "identd": "-",
 "record_id": "4ca6a8b5-1a60-421e-9ae9-6c30330e497e",
 "record_raw_value": "83.149.9.216 - - [17/May/2015:10:05:43 +0000] \"GET /presentations/logstash-monitorama-2013/images/kibana-dashboard3.png HTTP/1.1\" 200 171717 \"http://semicomplete.com/presentations/logstash-monitorama-2013/\" \"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36\"",
 "record_time": 1431857143000,
 "record_type": "apache_log",
 "src_ip": "83.149.9.216",
 "user": "-"
 }
}

You can now browse your data in Kibana and build great dashboards

 Time series sampling & Outliers detection

Time series sampling & Outliers detection

In the following tutorial we’ll handle time series data from a sensor. We’ll see how sample the datapoints in a visually
non destructive way and

We assume that you are already familiar with logisland platform and that you have successfully done the previous tutorials.

Note

You can download the latest release [https://github.com/Hurence/logisland/releases] of logisland and the YAML configuration file [https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/outlier-detection.yml] for this tutorial which can be also found under $LOGISLAND_HOME/conf directory.

1. Setup the time series collection Stream

The first Stream use a KafkaRecordStreamParallelProcessing
and chain of a SplitText

The first Processor simply parse the csv lines while the second index them into the search engine.
Please note the output schema.

parsing time series
- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that links
 configuration:
 kafka.input.topics: logisland_ts_raw
 kafka.output.topics: logisland_ts_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 avro.output.schema: >
 { "version":1,
 "type": "record",
 "name": "com.hurence.logisland.record.cpu_usage",
 "fields": [
 { "name": "record_errors", "type": [{"type": "array", "items": "string"},"null"] },
 { "name": "record_raw_key", "type": ["string","null"] },
 { "name": "record_raw_value", "type": ["string","null"] },
 { "name": "record_id", "type": ["string"] },
 { "name": "record_time", "type": ["long"] },
 { "name": "record_type", "type": ["string"] },
 { "name": "record_value", "type": ["string","null"] }]}
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:
 - processor: apache_parser
 component: com.hurence.logisland.processor.SplitText
 type: parser
 documentation: a parser that produce events from an apache log REGEX
 configuration:
 record.type: apache_log
 value.regex: (\S+),(\S+)
 value.fields: record_time,record_value

2. Setup the Outliers detection Stream

The first Stream use a KafkaRecordStreamParallelProcessing
and a DetectOutliers Processor

Note

It’s important to see that we perform outliers detection in parallel.
So if we would perform this detection for a particular grouping of record we would have used
a KafkaRecordStreamSQLAggregator with a GROUP BY clause instead.

detect outliers
- stream: detect_outliers
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that match query in parrallel
 configuration:
 kafka.input.topics: logisland_sensor_events
 kafka.output.topics: logisland_sensor_outliers_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:
 - processor: match_query
 component: com.hurence.logisland.processor.DetectOutliers
 type: processor
 documentation: a processor that detection something exotic in a continuous time series values
 configuration:
 rotation.policy.type: by_amount
 rotation.policy.amount: 100
 rotation.policy.unit: points
 chunking.policy.type: by_amount
 chunking.policy.amount: 10
 chunking.policy.unit: points
 global.statistics.min: -100000
 min.amount.to.predict: 100
 zscore.cutoffs.normal: 3.5
 zscore.cutoffs.moderate: 5
 record.value.field: record_value
 record.time.field: record_time
 output.record.type: sensor_outlier

3. Setup the time series Sampling Stream

The first Stream use a KafkaRecordStreamParallelProcessing
and a RecordSampler Processor

sample time series
- stream: detect_outliers
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that match query in parrallel
 configuration:
 kafka.input.topics: logisland_sensor_events
 kafka.output.topics: logisland_sensor_sampled_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:
 - processor: sampler
 component: com.hurence.logisland.processor.SampleRecords
 type: processor
 documentation: a processor that reduce the number of time series values
 configuration:
 record.value.field: record_value
 record.time.field: record_time
 sampling.algorithm: average
 sampling.parameter: 10

4. Setup the indexing Stream

The last Stream use a KafkaRecordStreamParallelProcessing
and chain of a SplitText and a BulkAddElasticsearch
for indexing the whole records

index records
- stream: indexing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that links
 configuration:
 kafka.input.topics: logisland_sensor_events,logisland_sensor_outliers_events,logisland_sensor_sampled_events
 kafka.output.topics: none
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: none
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:
 - processor: es_publisher
 component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
 type: processor
 documentation: a processor that trace the processed events
 configuration:
 elasticsearch.client.service: elasticsearch_service
 default.index: logisland
 default.type: event
 timebased.index: yesterday
 es.index.field: search_index
 es.type.field: record_type

4. Start logisland application

Connect a shell to your logisland container to launch the following stream processing job previously defined.

docker exec -ti logisland bash

#launch logisland streams
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/outlier-detection.yml

send logs to kafka
cat cpu_utilization_asg_misconfiguration.csv | kafkacat -b sandbox:9092 -P -t logisland_sensor_raw

5. Check your alerts with Kibana

 Bro/Logisland integration - Indexing Bro events

Bro/Logisland integration - Indexing Bro events

Bro and Logisland

Bro [https://www.bro.org] is a Network IDS
(Intrusion Detection System [https://en.wikipedia.org/wiki/Intrusion_detection_system]) that
can be deployed to monitor your infrastructure. Bro listens to the packets of your network
and generates high level events from them. It can for instance generate an event each time there is a
connection, a file transfer, a DNS query…anything that can be deduced from packet analysis.

Through its out-of-the-box ParseBroEvent processor, Logisland integrates with Bro and is able to receive and handle Bro events and notices coming from Bro.
By analyzing those events with Logisland, you may do some correlations and for instance generate some higher level alarms or do whatever
you want, in a scalable manner, like monitoring a huge infrastructure with hundreds of machines.

Bro comes with a scripting language that allows to also generate some higher level events from other events correlations.
Bro calls such events ‘notices’. For instance a notice can be generated when a user or bot tries to guess a password with brute forcing.
Logisland is also able to receive and handle those notices.

For the purpose of this tutorial, we will show you how to receive Bro events and notices in Logisland and how to index them in
ElasticSearch for network audit purpose. But you can imagine to plug any Logisland processors after the ParseBroEvent processor to build
your own monitoring system or any other application based on Bro events and notices handling.

Tutorial environment

This tutorial will give you a better understanding of how Bro and Logisland integrate together.

We will start two Docker containers:

	1 container hosting all the LogIsland services

	1 container hosting Bro pre-loaded with Bro-Kafka plugin

We will launch two streaming processes and configure Bro to send events and notices to the Logisland system so that they
are indexed in ElasticSearch.

It is important to understand that in a production environment Bro would be installed on machines where he is relevant for
your infrastructure and will be configured to remotely point to the Logisland service (Kafka). But for easiness of this tutorial, we
provide you with an easy mean of generating Bro events through our Bro Docker image.

This tutorial will guide you through the process of configuring Logisland for treating Bro events, and configuring Bro of the
second container to send the events and notices to the Logisland service in the first container.

Note

You can download the latest release [https://github.com/Hurence/logisland/releases] of Logisland and the YAML configuration file [https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-bro-events.yml]
for this tutorial which can be also found under $LOGISLAND_HOME/conf directory in the Logsiland container.

1. Start the Docker container with LogIsland

LogIsland is packaged as a Docker image that you can build yourself [https://github.com/Hurence/logisland/tree/master/logisland-docker#build-your-own] or pull from Docker Hub.
The docker image is built from a CentOs image with the following components already installed (among some others not useful for this tutorial):

	Kafka

	Spark

	Elasticsearch

	LogIsland

Pull the image from Docker Repository (it may take some time)

docker pull hurence/logisland

You should be aware that this Docker container is quite eager in RAM and will need at least 8G of memory to run smoothly.
Now run the container

run container
docker run \
 -it \
 -p 80:80 \
 -p 8080:8080 \
 -p 3000:3000 \
 -p 9200-9300:9200-9300 \
 -p 5601:5601 \
 -p 2181:2181 \
 -p 9092:9092 \
 -p 9000:9000 \
 -p 4050-4060:4050-4060 \
 --name logisland \
 -h sandbox \
 hurence/logisland bash

get container ip
docker inspect logisland | grep IPAddress

or if your are on mac os
docker-machine ip default

You should add an entry for sandbox (with the container ip) in your /etc/hosts as it will be easier to access to all web services in Logisland running container.
Or you can use ‘localhost’ instead of ‘sandbox’ where applicable.

Note

If you have your own Spark and Kafka cluster, you can download the latest release [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

2.Install required components

For this tutorial please make sure to already have installed elasticsearch and excel modules.

If not you can just do it through the components.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_2_4_0-client:1.1.1

3. Transform Bro events into Logisland records

For this tutorial we will receive Bro events and notices and send them to Elastiscearch. The configuration file for this tutorial is
already present in the container at $LOGISLAND_HOME/conf/index-bro-events.yml and its content can be viewed
here [https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-bro-events.yml]
. Within the following steps, we will go through this configuration file and detail the sections and what they do.

Connect a shell to your Logisland container to launch a Logisland instance with the following streaming jobs:

docker exec -ti logisland bash
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-bro-events.yml

Note

Logisland is now started. If you want to go straight forward and do not care for the moment about the configuration file details, you can now skip the
following sections and directly go to the 4. Start the Docker container with Bro section.

Setup Spark/Kafka streaming engine

An Engine is needed to handle the stream processing. The conf/index-bro-events.yml configuration file defines a stream processing job setup.
The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) as well as an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

engine:
 component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
 type: engine
 documentation: Index Bro events with LogIsland
 configuration:
 spark.app.name: IndexBroEventsDemo
 spark.master: local[4]
 spark.driver.memory: 1G
 spark.driver.cores: 1
 spark.executor.memory: 2G
 spark.executor.instances: 4
 spark.executor.cores: 2
 spark.yarn.queue: default
 spark.yarn.maxAppAttempts: 4
 spark.yarn.am.attemptFailuresValidityInterval: 1h
 spark.yarn.max.executor.failures: 20
 spark.yarn.executor.failuresValidityInterval: 1h
 spark.task.maxFailures: 8
 spark.serializer: org.apache.spark.serializer.KryoSerializer
 spark.streaming.batchDuration: 4000
 spark.streaming.backpressure.enabled: false
 spark.streaming.unpersist: false
 spark.streaming.blockInterval: 500
 spark.streaming.kafka.maxRatePerPartition: 3000
 spark.streaming.timeout: -1
 spark.streaming.unpersist: false
 spark.streaming.kafka.maxRetries: 3
 spark.streaming.ui.retainedBatches: 200
 spark.streaming.receiver.writeAheadLog.enable: false
 spark.ui.port: 4050

 controllerServiceConfigurations:

 - controllerService: elasticsearch_service
 component: com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_ClientService
 type: service
 documentation: elasticsearch 2.4.0 service implementation
 configuration:
 hosts: sandbox:9300
 cluster.name: elasticsearch
 batch.size: 20000

 streamConfigurations:

Stream 1: Parse incoming Bro events

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the Bro events and notices sent in the bro topic and push the processing output into the logisland_events topic.

Parsing
- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: A processor chain that transforms Bro events into Logisland records
 configuration:
 kafka.input.topics: bro
 kafka.output.topics: logisland_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:

Within this stream there is a single processor in the processor chain: the Bro processor. It takes an incoming Bro event/notice JSON document and computes a Logisland Record as a sequence of fields
that were contained in the JSON document.

Transform Bro events into Logisland records
- processor: Bro adaptor
 component: com.hurence.logisland.processor.bro.ParseBroEvent
 type: parser
 documentation: A processor that transforms Bro events into LogIsland events

This stream will process Bro events as soon as they will be queued into the bro Kafka topic. Each log will
be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

Stream 2: Index the processed records into Elasticsearch

The second Kafka stream will handle Records pushed into the logisland_events topic to index them into ElasticSearch.
So there is no need to define an output topic. The input topic is enough:

Indexing
- stream: indexing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: processor
 documentation: A processor chain that pushes bro events to ES
 configuration:
 kafka.input.topics: logisland_events
 kafka.output.topics: none
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: none
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:

The only processor in the processor chain of this stream is the BulkAddElasticsearch processor.

Bulk add into ElasticSearch
- processor: ES Publisher
 component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
 type: processor
 documentation: A processor that pushes Bro events into ES
 configuration:
 elasticsearch.client.service: elasticsearch_service
 default.index: bro
 default.type: events
 timebased.index: today
 es.index.field: search_index
 es.type.field: record_type

The default.index: bro configuration parameter tells the processor to index events into an index starting with the bro string.
The timebased.index: today configuration parameter tells the processor to use the current date after the index prefix. Thus the index name
is of the form /bro.2017.02.23.

Finally, the es.type.field: record_type configuration parameter tells the processor to use the
record field record_type of the incoming record to determine the ElasticSearch type to use within the index.

We will come back to these settings and what they do in the section where we see examples of events to illustrate the workflow.

4. Start the Docker container with Bro

For this tutorial, we provide Bro as a Docker image that you can build yourself [https://github.com/Hurence/logisland/tree/master/logisland-docker/bro] or pull from Docker Hub.
The docker image is built from an Ubuntu image with the following components already installed:

	Bro

	Bro-Kafka plugin

Note

Due to the fact that Bro requires a Kafka plugin to be able to send events to Kafka and that building the Bro-Kafka plugin requires
some substantial steps (need Bro sources), for this tutorial, we are only focusing on configuring Bro, and consider it already compiled and installed
with its Bro-Kafka plugin (this is the case in our Bro docker image). But looking at the Dockerfile we made to build the Bro Docker
image and which is located here [https://github.com/Hurence/logisland/tree/master/logisland-docker/bro/Dockerfile],
you will have an idea on how to install Bro and Bro-Kafka plugin binaries on your own systems.

Pull the Bro image from Docker Repository:

Warning

If the Bro image is not yet available in the Docker Hub: please build our Bro Docker image yourself as described in the link above for the moment.

docker pull hurence/bro

Start a Bro container from the Bro image:

run container
docker run -it --name bro -h bro hurence/bro

get container ip
docker inspect bro | grep IPAddress

or if your are on mac os
docker-machine ip default

5. Configure Bro to send events to Kafka

In the following steps, if you want a new shell to your running bro container, do as necessary:

docker exec -ti bro bash

Make the sandbox hostname reachable

Kafka in the Logisland container broadcasts his hostname which we have set up being sandbox. For this hostname to be reachable from the Bro container, we must declare the IP address of the Logisland container. In the Bro container, edit the /etc/hosts file and add the following line at the end of the file, using the right IP address:

172.17.0.2 sandbox

Note

Be sure to use the IP address of your Logisland container.

Note

Any potential communication problem of the Bro-Kafka plugin will be displayed in the /usr/local/bro/spool/bro/stderr.log log file. Also, you should not need this, but the advertised name used by Kafka is declared in the /usr/local/kafka/config/server.properties file (in the Logisland container), in the advertised.host.name property. Any modification to this property requires a Kafka server restart.

Edit the Bro config file

We will configure Bro so that it loads the Bro-Kafka plugin at startup. We will also point to Kafka of the Logisland container
and define the event types we want to push to Logisland.

Edit the config file of bro:

vi $BRO_HOME/share/bro/site/local.bro

At the beginning of the file, add the following section (take care to respect
indentation):

@load Bro/Kafka/logs-to-kafka.bro
 redef Kafka::kafka_conf = table(
 ["metadata.broker.list"] = "sandbox:9092",
 ["client.id"] = "bro"
);
 redef Kafka::topic_name = "bro";
 redef Kafka::logs_to_send = set(Conn::LOG, DNS::LOG, SSH::LOG, Notice::LOG);
 redef Kafka::tag_json = T;

Let’s detail a bit what we did:

This line tells Bro to load the Bro-Kafka plugin at startup (the next lines are configuration for the Bro-Kafka plugin):

@load Bro/Kafka/logs-to-kafka.bro

These lines make the Bro-Kafka plugin point to the Kafka instance in the Logisland
container (host, port, client id to use). These are communication settings:

redef Kafka::kafka_conf = table(
 ["metadata.broker.list"] = "sandbox:9092",
 ["client.id"] = "bro"
);

This line tells the Kafka topic name to use. It is important that it is the same as the
input topic of the ParseBroEvent processor in Logisland:

redef Kafka::topic_name = "bro";

This line tells the Bro-Kafka plugin what type of events should be intercepted and sent to Kafka. For this tutorial we
send Connections, DNS and SSH events. We are also interested in any notice (alert) that Bro can generate.
For a complete list of possibilities, see the Bro documentation for events [https://www.bro.org/sphinx/script-reference/log-files.html]
and notices [https://www.bro.org/sphinx/bro-noticeindex.html]. If you want all possible events and notices available by default
to be sent into Kafka, just comment this line:

redef Kafka::logs_to_send = set(Conn::LOG, DNS::LOG, SSH::LOG, Notice::LOG);

This line tells the Bro-Kafka plugin to add the event type in the Bro JSON document it sends.
This is required and expected by the Bro Processor as it uses this field to tag the record with his type.
This also tells Logisland which ElasticSearch index type to use for storing the event:

redef Kafka::tag_json = T;

Start Bro

To start bro, we use the broctl command that is already in the path of the container.
It starts an interactive session to control bro:

broctl

Then start the bro service: use the deploy command in broctl session:

Welcome to BroControl 1.5-9

Type "help" for help.

[BroControl] > deploy
checking configurations ...
installing ...
removing old policies in /usr/local/bro/spool/installed-scripts-do-not-touch/site ...
removing old policies in /usr/local/bro/spool/installed-scripts-do-not-touch/auto ...
creating policy directories ...
installing site policies ...
generating standalone-layout.bro ...
generating local-networks.bro ...
generating broctl-config.bro ...
generating broctl-config.sh ...
stopping ...
bro not running
starting ...
starting bro ...

Note

The deploy command is a shortcut to the check, install and restart commands.
Everytime you modify the $BRO_HOME/share/bro/site/local.bro configuration file, you must re-issue a deploy command so that
changes are taken into account.

6. Generate some Bro events and notices

Now that everything is in place you can generate some network activity in the Bro container to generate some events and see them indexed in ElasticSearch.

Monitor Kafka topic

We will generate some events but first we want to see them in Kafka to be sure Bro has forwarded them to Kafka.
Connect to the Logisland container:

docker exec -ti logisland bash

Then use the kafkacat command to listen to messages incoming in the bro topic:

kafkacat -b localhost:9092 -t bro -o end

Let the command run. From now on, any incoming event from Bro and entering Kafka will be also displayed in this shell.

Issue a DNS query

Open a shell to the Bro container:

docker exec -ti bro bash

Then use the ping command to trigger an underlying DNS query:

ping www.wikipedia.org

You should see in the listening kafkacat shell an incoming JSON Bro event of type dns.

Here is a pretty print version of this event. It should look like this one:

{
 "dns": {
 "AA": false,
 "TTLs": [599],
 "id.resp_p": 53,
 "rejected": false,
 "query": "www.wikipedia.org",
 "answers": ["91.198.174.192"],
 "trans_id": 56307,
 "rcode": 0,
 "id.orig_p": 60606,
 "rcode_name": "NOERROR",
 "TC": false,
 "RA": true,
 "uid": "CJkHd3UABb4W7mx8b",
 "RD": false,
 "id.orig_h": "172.17.0.2",
 "proto": "udp",
 "id.resp_h": "8.8.8.8",
 "Z": 0,
 "ts": 1487785523.12837
 }
}

The Bro Processor should have processed this event which should have been handled next by the BulkAddElasticsearch processor and
finally the event should have been stored in ElasticSearch in the Logisland container.

To see this stored event, we will query ElasticSearch with the curl command. Let’s browse the dns type in any index starting with bro:

curl http://sandbox:9200/bro*/dns/_search?pretty

Note

Do not forget to change sandbox with the IP address of the Logisland container if needed.

You should be able to localize in the response from ElasticSearch a DNS event which looks like:

{
 "_index" : "bro.2017.02.23",
 "_type" : "dns",
 "_id" : "6aecfa3a-6a9e-4911-a869-b4e4599a69c1",
 "_score" : 1.0,
 "_source" : {
 "@timestamp": "2017-02-23T17:45:36Z",
 "AA": false,
 "RA": true,
 "RD": false,
 "TC": false,
 "TTLs": [599],
 "Z": 0,
 "answers": ["91.198.174.192"],
 "id_orig_h": "172.17.0.2",
 "id_orig_p": 60606,
 "id_resp_h": "8.8.8.8",
 "id_resp_p": 53,
 "proto": "udp",
 "query": "www.wikipedia.org",
 "rcode": 0,
 "rcode_name": "NOERROR",
 "record_id": "1947d1de-a65e-42aa-982f-33e9c66bfe26",
 "record_time": 1487785536027,
 "record_type": "dns",
 "rejected": false,
 "trans_id": 56307,
 "ts": 1487785523.12837,
 "uid": "CJkHd3UABb4W7mx8b"
 }
}

You should see that this JSON document is stored in a indexed of the form /bro.XXXX.XX.XX/dns:

"_index" : "bro.2017.02.23",
"_type" : "dns",

Here, as the Bro event is of type dns, the event has been indexed using the dns ES
type in the index. This allows to easily search only among events of a particular
type.

The ParseBroEvent processor has used the first level field dns of the incoming JSON event from Bro to add
a record_type field to the record he has created. This field has been used by the BulkAddElasticsearch processor
to determine the index type to use for storing the record.

The @timestamp field is added by the BulkAddElasticsearch processor before pushing the record into ES. Its value is
derived from the record_time field which has been added with also the record_id field by Logisland
when the event entered Logisland. The ts field is the Bro timestamp which is the time when the event
was generated in the Bro system.

Other second level fields of the incoming JSON event from Bro have been set as first level fields in the record
created by the Bro Processor. Also any field that had a “.” chacracter has been transformed to use a “_” character.
For instance the id.orig_h field has been renamed into id_orig_h.

That is basically all the job the Bro Processor does. It’s a small adaptation layer for Bro events. Now if you look in the
Bro documentation and know the Bro event format, you can be able to know the format of a matching record going out of
the ParseBroEvent processor. You should then be able to write some Logsisland processors to handle any record going out of the Bro Processor.

Issue a Bro Notice

As a Bro notice is the result of analysis of many events, generating a real notice event with Bro is a bit more complicated if
you want to generate it with real traffic. Fortunately, Bro has the ability to generate events also from pcap files.
These are “packect capture” files. They hold the recording of a real network traffic. Bro analyzes the packets in those
files and generate events as if he was listening to real traffic.

In the Bro container, we have preloaded some pcap files in the $PCAP_HOME directory. Go into this directory:

cd $PCAP_HOME

The ssh.pcap file in this directory is a capture of a network traffic in which there is some SSH traffic with an
attempt to guess a user password. The analysis of such traffic generates a Bro SSH::Password_Guessing notice.

Let’s launch the following command to make Bro analyze the packets in the ssh.pcap file and generate this notice:

bro -r ssh.pcap local

In your previous kafkacat shell, you should see some ssh events that represent the SSH traffic. You should also see
a notice event like this one:

{
 "notice": {
 "ts":1320435875.879278,
 "note":"SSH::Password_Guessing",
 "msg":"172.16.238.1 appears to be guessing SSH passwords (seen in 30 connections).",
 "sub":"Sampled servers: 172.16.238.136, 172.16.238.136, 172.16.238.136, 172.16.238.136, 172.16.238.136",
 "src":"172.16.238.1",
 "peer_descr":"bro",
 "actions":["Notice::ACTION_LOG"],
 "suppress_for":3600.0,
 "dropped":false
 }
}

Then, like for the DNS event, it should also have been indexed in the notice index type in ElastiSearch. Browse documents in this
type like this:

curl http://sandbox:9200/bro*/notice/_search?pretty

Note

Do not forget to change sandbox with the IP address of the Logisland container if needed.

In the response, you should see a notice event like this:

{
 "_index" : "bro.2017.02.23",
 "_type" : "notice",
 "_id" : "76ab556b-167d-4594-8ee8-b05594cab8fc",
 "_score" : 1.0,
 "_source" : {
 "@timestamp" : "2017-02-23T10:45:08Z",
 "actions" : ["Notice::ACTION_LOG"],
 "dropped" : false,
 "msg" : "172.16.238.1 appears to be guessing SSH passwords (seen in 30 connections).",
 "note" : "SSH::Password_Guessing",
 "peer_descr" : "bro",
 "record_id" : "76ab556b-167d-4594-8ee8-b05594cab8fc",
 "record_time" : 1487933108041,
 "record_type" : "notice",
 "src" : "172.16.238.1",
 "sub" : "Sampled servers: 172.16.238.136, 172.16.238.136, 172.16.238.136, 172.16.238.136, 172.16.238.136",
 "suppress_for" : 3600.0,
 "ts" : 1.320435875879278E9
 }
 }

We are done with this first approach of Bro integration with LogIsland.

As we configured Bro to also send SSH and Connection events to Kafka, you can have a look at the matching
generated events in ES by browsing the ssh and conn index types:

Browse SSH events
curl http://sandbox:9200/bro*/ssh/_search?pretty
Browse Connection events
curl http://sandbox:9200/bro*/conn/_search?pretty

If you wish, you can also add some additional event types to be sent to Kafka in the Bro config
file and browse the matching indexed events in ES using the same kind of curl commands just by changing
the type in the query (do not forget to re-deploy Bro after configuration file modifications).

 Netflow/Logisland integration - Handling Netflow traffic

Netflow/Logisland integration - Handling Netflow traffic

Netflow and Logisland

Netflow [http://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/netflow/nfwhite.html] is a feature introduced
on Cisco routers that provides the ability to collect IP network traffic. We can distinguish 2 components:

	Flow exporter: aggregates packets into flows and exports flow records (binary format) towards flow collectors

	Flow collector: responsible for reception, storage and pre-processing of flow data received from a flow exporter

The collected data are therefore available for analysis purpose (intrusion detection, traffic analysis…)

Network Flows:
A network flow can be defined in many ways. Cisco standard NetFlow version 5 defines a flow as a unidirectional sequence of packets that all share the following 7 values:

	Ingress interface (SNMP ifIndex)

	Source IP address

	Destination IP address

	IP protocol

	Source port for UDP or TCP, 0 for other protocols

	Destination port for UDP or TCP, type and code for ICMP, or 0 for other protocols

	IP Type of Service

NetFlow Record

A NetFlow record can contain a wide variety of information about the traffic in a given flow. NetFlow version 5 (one of the most commonly used versions, followed by version 9) contains the following:

	Input interface index used by SNMP (ifIndex in IF-MIB).

	Output interface index or zero if the packet is dropped.

	Timestamps for the flow start and finish time, in milliseconds since the last boot.

	Number of bytes and packets observed in the flow

	Layer 3 headers:

	Source & destination IP addresses

	ICMP Type and Code.

	IP protocol

	Type of Service (ToS) value

	Source and destination port numbers for TCP, UDP, SCTP

	For TCP flows, the union of all TCP flags observed over the life of the flow.

	Layer 3 Routing information:

	IP address of the immediate next-hop (not the BGP nexthop) along the route to the destination

	Source & destination IP masks (prefix lengths in the CIDR notation)

Through its out-of-the-box Netflow processor, Logisland integrates with Netflow (V5) and is able to receive and handle Netflow events coming from a netflow collector.
By analyzing those events with Logisland, you may do some analysis for example for intrusion detection or traffic analysis.

In this tutorial, we will show you how to generate some Netflow traffic in LogIsland and how to index them in
ElasticSearch and vizualize them in Kinbana. More complexe treatment could bv done by plugging any Logisland processors after the Netflow processor.

Tutorial environment

This tutorial aims to show how to handle Netflow traffic within LogIsland.

For the purpose of this tutorial, we will generate Netflow traffic using nfgen [https://github.com/pazdera/NetFlow-Exporter-Simulator]. This tool will simulate a netflow traffic and send binary netflow records on port 2055 of sandbox. A nifi instance running on sandbox will listen on that port for incoming traffic and push the binary events to a kafka broker.

We will launch two streaming processes, one for generating the corresponding Netflow LogIsland records and the second one to index them in ElasticSearch.

Note

It is important to understand that in real environment Netflow traffic will be triggered by network devices (router, switches,…), so you will have to get the netflow traffic from the defined collectors, and send the corresponding record (formatted in JSON format as described before) to the Logisland service (Kafka).

Note

You can download the latest release [https://github.com/Hurence/logisland/releases] of Logisland and the YAML configuration file [https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-netflow-events.yml] for this tutorial which can also be found under $LOGISLAND_HOME/conf directory in the LogIsland container.

1. Start LogIsland as a Docker container

LogIsland is packaged as a Docker container that you can build yourself or pull from Docker Hub.
The docker container is built from a Centos 6.4 image with the following tools enabled (among others)

	Kafka

	Spark

	Elasticsearch

	Kibana

	LogIsland

Pull the image from Docker Repository (it may take some time)

docker pull hurence/logisland

You should be aware that this Docker container is quite eager in RAM and will need at least 8G of memory to run smoothly.
Now run the container

run container
docker run \
 -it \
 -p 80:80 \
 -p 8080:8080 \
 -p 2055:2055 \
 -p 3000:3000 \
 -p 9200-9300:9200-9300 \
 -p 5601:5601 \
 -p 2181:2181 \
 -p 9092:9092 \
 -p 9000:9000 \
 -p 4050-4060:4050-4060 \
 --name logisland \
 -h sandbox \
 hurence/logisland bash

get container ip
docker inspect logisland

or if your are on mac os
docker-machine ip default

you should add an entry for sandbox (with the container ip) in your /etc/hosts as it will be easier to access to all web services in logisland running container.

Note

If you have your own Spark and Kafka cluster, you can download the latest release [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

2. Configuration steps

First we have to peform some configuration steps on sandbox (to configure and start elasticsearch and nifi). We will create a dynamic template in ElasticSearch (to better handle the field mapping) using the following command:

docker exec -ti logisland bash

[root@sandbox /]# curl -XPUT localhost:9200/_template/netflow -d '{
 "template" : "netflow.*",
 "settings": {
 "index.refresh_interval": "5s"
 },
 "mappings" : {
 "netflowevent" : {
 "numeric_detection": true,
 "_all" : {"enabled" : false},
 "properties" : {
 "dOctets": {"index": "analyzed", "type": "long" },
 "dPkts": { "index": "analyzed", "type": "long" },
 "dst_as": { "index": "analyzed", "type": "long" },
 "dst_mask": { "index": "analyzed", "type": "long" },
 "dst_ip4": { "index": "analyzed", "type": "ip" },
 "dst_port": { "index": "analyzed", "type": "long" },
 "first":{"index": "analyzed", "type": "long" },
 "input":{"index": "analyzed", "type": "long" },
 "last":{"index": "analyzed", "type": "long" },
 "nexthop":{"index": "analyzed", "type": "ip" },
 "output":{"index": "analyzed", "type": "long" },
 "nprot":{"index": "analyzed", "type": "long" },
 "record_time":{"index": "analyzed", "type": "date","format": "strict_date_optional_time||epoch_millis" },
 "src_as":{"index": "analyzed", "type": "long" },
 "src_mask":{"index": "analyzed", "type": "long" },
 "src_ip4": { "index": "analyzed", "type": "ip" },
 "src_port":{"index": "analyzed", "type": "long" },
 "flags":{"index": "analyzed", "type": "long" },
 "tos":{"index": "analyzed", "type": "long" },
 "unix_nsecs":{"index": "analyzed", "type": "long" },
 "unix_secs":{"index": "analyzed", "type": "date","format": "strict_date_optional_time||epoch_second" }
 }
 }
 }
}'

In order to send netflow V5 event (binary format) to logisland_raw Kafka topic, we will use a nifi instance which will simply listen for netflow traffic on a UDP port (we keep here the default netflow port 2055) and push these netflow records to a kafka broker (sandbox:9092 with topic netflow).

	Start nifi

docker exec -ti logisland bash
cd /usr/local/nifi-1.1.1
bin/nifi.sh start

browse http://sandbox:8080/nifi/

	Import flow template

Download this [https://github.com/Hurence/logisland/tree/master/logisland-documentation/_static/nifi_netflow.xml] nifi template and import it using “Upload Template” in “Operator” toolbox.

[image: ../_images/nifi-template-dialog.png]

	Use this template to create the nifi flow

Drag the nifi toolbar template icon in the nifi work area and choose “nifi_netflow” template, the press “ADD” button

[image: ../_images/nifi-drag-template.png]
You finally have the following nifi flow

[image: ../_images/nifi-flow.png]

	start nifi processors

Select listenUDP processor of nifi flow, right click on it and press “Start”. Do the same for putKafka processor.

Note

the PutFile processor is only for debugging purpose. It dumps netflow records to /tmp/netflow directory (that should be previously created). So you normally don’t have to start it for that demo.

3. Parse Netflow records

For this tutorial we will handle netflow binary events, generate corresponding logisland records and store them to Elastiscearch

Connect a shell to your logisland container to launch the following streaming jobs.

docker exec -ti logisland bash
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-netflow-events.yml

Setup Spark/Kafka streaming engine

An Engine is needed to handle the stream processing. This conf/index-netflow-events.yml configuration file defines a stream processing job setup.
The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) as well as an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

engine:
 component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
 type: engine
 documentation: Index Netflow events with LogIsland
 configuration:
 spark.app.name: IndexNetFlowEventsDemo
 spark.master: local[4]
 spark.driver.memory: 1G
 spark.driver.cores: 1
 spark.executor.memory: 2G
 spark.executor.instances: 4
 spark.executor.cores: 2
 spark.yarn.queue: default
 spark.yarn.maxAppAttempts: 4
 spark.yarn.am.attemptFailuresValidityInterval: 1h
 spark.yarn.max.executor.failures: 20
 spark.yarn.executor.failuresValidityInterval: 1h
 spark.task.maxFailures: 8
 spark.serializer: org.apache.spark.serializer.KryoSerializer
 spark.streaming.batchDuration: 4000
 spark.streaming.backpressure.enabled: false
 spark.streaming.unpersist: false
 spark.streaming.blockInterval: 500
 spark.streaming.kafka.maxRatePerPartition: 3000
 spark.streaming.timeout: -1
 spark.streaming.unpersist: false
 spark.streaming.kafka.maxRetries: 3
 spark.streaming.ui.retainedBatches: 200
 spark.streaming.receiver.writeAheadLog.enable: false
 spark.ui.port: 4050

 controllerServiceConfigurations:

 - controllerService: elasticsearch_service
 component: com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_ClientService
 type: service
 documentation: elasticsearch 2.4.0 service implementation
 configuration:
 hosts: sandbox:9300
 cluster.name: elasticsearch
 batch.size: 20000

 streamConfigurations:

Stream 1 : parse incoming Netflow (Binary format) lines

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the logs sent in logisland_raw topic and push the processing output into logisland_events topic.

We can define some serializers to marshall all records from and to a topic.

Parsing
- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: A processor chain that transforms Netflow events into Logisland records
 configuration:
 kafka.input.topics: netflow
 kafka.output.topics: logisland_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 2
 processorConfigurations:

Within this stream there is a single processor in the processor chain: the Netflow processor. It takes an incoming Netflow event/notice binary record, parses it and computes a Logisland Record as a sequence of fields that were contained in the binary record.

Transform Netflow events into Logisland records
 - processor: Netflow adaptor
 component: com.hurence.logisland.processor.netflow.ParseNetflowEvent
 type: parser
 documentation: A processor that transforms Netflow events into LogIsland events
 configuration:
 debug: false
 enrich.record: false

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

Stream 2: Index the processed records into Elasticsearch

The second Kafka stream will handle Records pushed into the logisland_events topic to index them into ElasticSearch. So there is no need to define an output topic:

Indexing
- stream: indexing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: processor
 documentation: A processor chain that pushes netflow events to ES
 configuration:
 kafka.input.topics: logisland_events
 kafka.output.topics: none
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: none
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:

The only processor in the processor chain of this stream is the BulkAddElasticsearch processor.

Bulk add into ElasticSearch
- processor: ES Publisher
 component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
 type: processor
 documentation: A processor that pushes Netflow events into ES
 configuration:
 elasticsearch.client.service: elasticsearch_service
 default.index: netflow
 default.type: events
 timebased.index: today
 es.index.field: search_index
 es.type.field: record_type

The default.index: netflow configuration parameter tells the processor to index events into
an index starting with the netflow string.
The timebased.index: today configuration parameter tells the processor to use the current date after the index prefix. Thus the index name is of the form /netflow.2017.03.30.

Finally, the es.type.field: record_type configuration parameter tells the processor to use the
record field record_type of the incoming record to determine the ElasticSearch type to use within the index.

4. Inject Netflow events into the system

Generate Netflow events to port 2055 of localhost

Now that we have our nifi flow listening on port 2055 from Netflow (V5) traffic and push them to kafka, we have to generate netflow traffic. For the purpose of this tutorial, as already mentioned, we will install and use a netflow traffic generator (but you can use whatever other way to generate Netflow V5 traffic to port 2055)

docker exec -ti logisland bash
cd /tmp
wget https://github.com/pazdera/NetFlow-Exporter-Simulator/archive/master.zip
unzip master.zip
cd NetFlow-Exporter-Simulator-master/
make
./nfgen #this command will generate netflow V5 traffic and send it to local port 2055.

5. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process
your data

[image: ../_images/spark-job-monitoring.png]

6. Use Kibana to inspect events

Inspect Netflow events under Discover tab

Open your browser and go to http://sandbox:5601/ [http://sandbox:5601/app/kibana#/settings/indices/?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:now-15m,mode:quick,to:now))]

Configure a new index pattern with netflow.* as the pattern name and @timestamp as the time value field.

[image: ../_images/kibana-configure-index-netflow.png]

Then browse “Discover” tab [http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:'5%20seconds',pause:!f,section:1,value:5000),time:(from:now-1h,mode:relative,to:now))], you should be able to explore your Netflow events.

[image: ../_images/kibana-logisland-metrics-netflow.png]

You have now to save your search by clicking the save icon. Save this search as “netflowsearch”

[image: ../_images/kibana-save-search.png]

Display network information in kibana dashboard

First, you need to import the predefined Kibana dashboard (download this file [https://github.com/Hurence/logisland/tree/master/logisland-documentation/_static/netflow_dashboard.json] first) under Settings tab, Objetcs subtab.

Select Import and load previously saved netflow_dashboard.json dashboard (it also contains required Kibana visualizations)

[image: ../_images/kibana-logisland-import-dashboard.png]

Then visit Dashboard tab, and open dashboard_netflow dashboard by clicking on Load Saved Dashboard. You should be able to visualize information about the generated traffic (choose the right time window, corresponding to the time of your traffic, in the right upper corner of kibana page)

[image: ../_images/kibana-logisland-dashboard.png]

 Capturing Network packets in Logisland

Capturing Network packets in Logisland

1. Network Packets

A network packet is a formatted unit of data carried by a network from one computer (or device) to another. For example, a web page or an email are carried as a series of packets of a certain size in bytes. Each packet carries the information that will help it get to its destination : the sender’s IP address, the intended receiver’s IP address, something that tells the network how many packets the message has been broken into, …

Packet Headers

1. Protocol headers (IP, TCP, …)

This information is stored in different layers called “headers”, encapsulating the packet payload. For example, a TCP/IP packet is wrapped in a TCP header [https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure], which is in turn encapsulated in an IP header [https://en.wikipedia.org/wiki/IPv4#Header].

The individual packets for a given file or message may travel different routes through the Internet. When they have all arrived, they are reassembled by the TCP layer at the receiving end.

2. PCAP format specific headers

Packets can be either analysed in real-time (stream mode) or stored in files for upcoming analysis (batch mode). In the latter case, the packets are stored in the pcap format, adding some specific headers :

	a global header [https://wiki.wireshark.org/Development/LibpcapFileFormat#Global_Header] is added in the beginning of the pcap file

	a packet header [https://wiki.wireshark.org/Development/LibpcapFileFormat#Record_.28Packet.29_Header] is added in front of each packet

In this tutorial we are going to capture packets in live stream mode

Why capturing network packets ?

Packet sniffing, or packet analysis, is the process of capturing any data transmitted over the local network and searching for any information that may be useful for :

	Troubleshooting network problems

	Detecting network intrusion attempts

	Detecting network misuse by internal and external users

	Monitoring network bandwidth utilization

	Monitoring network and endpoint security status

	Gathering and report network statistics

Packets information collected by Logisland

LogIsland parses all the fields of IP protocol headers, namely :

1. IP Header fields

	IP version : ip_version

	Internet Header Length : ip_internet_header_length

	Type of Service : ip_type_of_service

	Datagram Total Length : ip_datagram_total_length

	Identification : ip_identification

	Flags : ip_flags

	Fragment offset : ip_fragment_offset

	Time To Live : ip_time_to_live

	Protocol : protocol

	Header Checksum : ip_checksum

	Source IP address : src_ip

	Destination IP address : dst_ip

	Options : ip_options (variable size)

	Padding : ip_padding (variable size)

2. TCP Header fields

	Source port number : src_port

	Destination port number : dest_port

	Sequence Number : tcp_sequence_number

	Acknowledgment Number : tcp_acknowledgment_number

	Data offset : tcp_data_offset

	Flags : tcp_flags

	Window size : tcp_window_size

	Checksum : tcp_checksum

	Urgent Pointer : tcp_urgent_pointer

	Options : tcp_options (variable size)

	Padding : tcp_padding (variable size)

3. UDP Header fields

	Source port number : src_port

	Destination port number : dest_port

	Segment total length : udp_segment_total_length

	Checksum : udp_checksum

2. Tutorial environment

This tutorial aims to show how to capture live Network Packets and process then in LogIsland. Through its out-of-the-box ParseNetworkPacket processor, LogIsland is able to receive and handle network packets captured by a packet sniffer tool.
Using LogIsland, you will be able to inspect those packets for network security, optimization or monitoring reasons.

In this tutorial, we will show you how to capture network packets, process those packets in LogIsland, index them in ElasticSearch and then display them in Kibana.

We will launch two streaming processors, one for parsing Network Packets into LogIsland packet records, and one to index those packet records in ElasticSearch.

Packet Capture Tool

For the purpose of this tutorial, we are going to capture network packets (off-the-wire) into a kafka topic using pycapa [https://github.com/apache/incubator-metron/tree/master/metron-sensors/pycapa] Apache probe, a tool based on Pcapy [https://github.com/CoreSecurity/pcapy], a Python extension module that interfaces with the libpcap [http://www.tcpdump.org] packet capture library.

For information, it is also possible to use the fastcapa [https://github.com/apache/incubator-metron/tree/master/metron-sensors/fastcapa] Apache probe, based on DPDK [http://dpdk.org/], intended for high-volume packet capture.

Note

You can download the latest release [https://github.com/Hurence/logisland/releases] of LogIsland and the YAML configuration file [https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-network-packets.yml]
for this tutorial which can be also found under $LOGISLAND_HOME/conf directory in the LogIsland container.

3. Start LogIsland as a Docker container

LogIsland is packaged as a Docker container that you can build yourself or pull from Docker Hub.
The docker container is built from a Centos 6.4 image with the following tools enabled (among others)

	Kafka

	Spark

	Elasticsearch

	Kibana

	LogIsland

Pull the image from Docker Repository (it may take some time)

docker pull hurence/logisland

You should be aware that this Docker container is quite eager in RAM and will need at least 8G of memory to run smoothly.
Now run the container

run container
docker run \
 -it \
 -p 80:80 \
 -p 8080:8080 \
 -p 3000:3000 \
 -p 9200-9300:9200-9300 \
 -p 5601:5601 \
 -p 2181:2181 \
 -p 9092:9092 \
 -p 9000:9000 \
 -p 4050-4060:4050-4060 \
 --name logisland \
 -h sandbox \
 hurence/logisland bash

get container ip
docker inspect logisland

or if your are on mac os
docker-machine ip default

you should add an entry for sandbox (with the container ip) in your /etc/hosts as it will be easier to access to all web services in logisland running container.

Note

If you have your own Spark and Kafka cluster, you can download the latest release [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

4. Parse Network Packets

In this tutorial we will capture network packets, process those packets in LogIsland and index them in ElasticSearch.

Connect a shell to your logisland container to launch LogIsland streaming jobs :

docker exec -ti logisland bash
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-network-packets.yml

Setup Spark/Kafka streaming engine

An Engine is needed to handle the stream processing. This conf/index-network-packets.yml configuration file defines a stream processing job setup.
The first section configures the Spark engine, we will use a KafkaStreamProcessingEngine :

engine:
 component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
 type: engine
 documentation: Parse network packets with LogIsland
 configuration:
 spark.app.name: ParseNetworkPacketDemo
 spark.master: local[4]
 spark.driver.memory: 1G
 spark.driver.cores: 1
 spark.executor.memory: 2G
 spark.executor.instances: 4
 spark.executor.cores: 2
 spark.yarn.queue: default
 spark.yarn.maxAppAttempts: 4
 spark.yarn.am.attemptFailuresValidityInterval: 1h
 spark.yarn.max.executor.failures: 20
 spark.yarn.executor.failuresValidityInterval: 1h
 spark.task.maxFailures: 8
 spark.serializer: org.apache.spark.serializer.KryoSerializer
 spark.streaming.batchDuration: 4000
 spark.streaming.backpressure.enabled: false
 spark.streaming.unpersist: false
 spark.streaming.blockInterval: 500
 spark.streaming.kafka.maxRatePerPartition: 3000
 spark.streaming.timeout: -1
 spark.streaming.unpersist: false
 spark.streaming.kafka.maxRetries: 3
 spark.streaming.ui.retainedBatches: 200
 spark.streaming.receiver.writeAheadLog.enable: false
 spark.ui.port: 4050

 controllerServiceConfigurations:

 - controllerService: elasticsearch_service
 component: com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_ClientService
 type: service
 documentation: elasticsearch 2.4.0 service implementation
 configuration:
 hosts: sandbox:9300
 cluster.name: elasticsearch
 batch.size: 4000

 streamConfigurations:

Stream 1 : parse incoming Network Packets

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the logs sent in logisland_input_packets_topic topic and push the processed packet records into logisland_parsed_packets_topic topic.

We can define some serializers to marshall all records from and to a topic.

Parsing
- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: A processor chain that parses network packets into Logisland records
 configuration:
 kafka.input.topics: logisland_input_packets_topic
 kafka.output.topics: logisland_parsed_packets_topic
 kafka.error.topics: logisland_error_packets_topic
 kafka.input.topics.serializer: com.hurence.logisland.serializer.BytesArraySerializer
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:

Within this stream there is a single processor in the processor chain: the ParseNetworkPacket processor. It takes an incoming network packet, parses it and computes a LogIsland record as a sequence of fields corresponding to packet headers fields.

Transform network packets into LogIsland packet records
- processor: ParseNetworkPacket processor
 component: com.hurence.logisland.processor.networkpacket.ParseNetworkPacket
 type: parser
 documentation: A processor that parses network packets into LogIsland records
 configuration:
 debug: true
 flow.mode: stream

This stream will process network packets as soon as they will be queued into logisland_input_packets_topic Kafka topic, each packet will be parsed as a record which will be pushed back to Kafka in the logisland_parsed_packets_topic topic.

Stream 2: Index the processed records into Elasticsearch

The second Kafka stream will handle Records pushed into the logisland_parsed_packets_topic topic to index them into ElasticSearch. So there is no need to define an output topic:

Indexing
- stream: indexing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: processor
 documentation: a processor that pushes events to ES
 configuration:
 kafka.input.topics: logisland_parsed_packets_topic
 kafka.output.topics: none
 kafka.error.topics: logisland_error_packets_topic
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: none
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:

The only processor in the processor chain of this stream is the BulkAddElasticsearch processor.

Bulk add into ElasticSearch
- processor: ES Publisher
 component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
 type: processor
 documentation: A processor that pushes network packet records into ES
 configuration:
 elasticsearch.client.service: elasticsearch_service
 default.index: packets_index
 default.type: events
 timebased.index: today
 es.index.field: search_index
 es.type.field: record_type

The default.index: packets_index configuration parameter tells the elasticsearch processor to index records into an index starting with the packets_index string.
The timebased.index: today configuration parameter tells the processor to use the current date after the index prefix. Thus the index name is of the form /packets_index.2017.03.30.

Finally, the es.type.field: record_type configuration parameter tells the processor to use the
record field record_type of the incoming record to determine the ElasticSearch type to use within the index.

5. Stream network packets into the system

Let’s install and use the Apache pycapa probe to capture and send packets to kafka topics in real time.

Install pycapa probe

All required steps to install pycapa probe are explained in this site [https://github.com/apache/incubator-metron/tree/master/metron-sensors/pycapa], but here are the main installation steps :

	Install libpcap, pip (python-pip) and python-devel :

yum install libpcap
yum install python-pip
yum install python-devel

	Build pycapa probe from Metron repo

cd /tmp
git clone https://github.com/apache/incubator-metron.git
cd incubator-metron/metron-sensors/pycapa
pip install -r requirements.txt
python setup.py install

Capture network packets

To start capturing network packets into the topic logisland_input_packets_topic using pycapa probe, use the following command :

pycapa --producer --kafka sandbox:9092 --topic logisland_input_packets_topic -i eth0

6. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process
your data

[image: ../_images/spark-streaming-packet-capture-job.png]

7. Use Kibana to inspect records

Inspect Network Packets under Discover tab

Open your browser and go to http://sandbox:5601/ [http://sandbox:5601/app/kibana#/settings/indices/?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:now-15m,mode:quick,to:now))]

Configure a new index pattern with packets.* as the pattern name and @timestamp as the time value field.

[image: ../_images/kibana-configure-index-packet.png]

Then browse “Discover” [http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:'5%20seconds',pause:!f,section:1,value:5000),time:(from:now-1h,mode:relative,to:now))] tab, you should be able to explore your network packet records :

[image: ../_images/kibana-logisland-metrics-packet-stream-pycapa.png]

 Generate Unique Ids

Generate Unique Ids

We will add a stage to the “index-apache-logs” tutorial. We will ensure every Record has a unique Id before injecting into Es.
This way we are sure to not have documentAlreadyException or to have two records that overwrite themselves.

Note

If you are not familiar with logisland yet. You should really read “index-apache-logs” tutorial before this one.

We assume we are at the stage just before injecting apache logs into ES from “index-apache-logs”

Stream 1 : parse incoming apache log lines

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the logs sent in logisland_raw topic and push the processing output into logisland_events topic.

Note

We want to specify an Avro output schema to validate our ouput records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

parsing
- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that links
 configuration:
 kafka.input.topics: logisland_raw
 kafka.output.topics: logisland_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 avro.output.schema: >
 { "version":1,
 "type": "record",
 "name": "com.hurence.logisland.record.apache_log",
 "fields": [
 { "name": "record_errors", "type": [{"type": "array", "items": "string"},"null"] },
 { "name": "record_raw_key", "type": ["string","null"] },
 { "name": "record_raw_value", "type": ["string","null"] },
 { "name": "record_id", "type": ["string"] },
 { "name": "record_time", "type": ["long"] },
 { "name": "record_type", "type": ["string"] },
 { "name": "src_ip", "type": ["string","null"] },
 { "name": "http_method", "type": ["string","null"] },
 { "name": "bytes_out", "type": ["long","null"] },
 { "name": "http_query", "type": ["string","null"] },
 { "name": "http_version","type": ["string","null"] },
 { "name": "http_status", "type": ["string","null"] },
 { "name": "identd", "type": ["string","null"] },
 { "name": "user", "type": ["string","null"] }]}
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of fields.

parse apache logs
- processor: apache_parser
 component: com.hurence.logisland.processor.SplitText
 type: parser
 documentation: a parser that produce events from an apache log REGEX
 configuration:
 value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
 value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,http_status,bytes_out

Within this stream a ModifyId processor takes Record ouput from SplitText processor and computes a new Id for them using the
value of their field “record_raw_value” that should content the original line string of the apache log. It will hash it using
“SHA-256” java implementation algorithm, using the charset “UTF-8”.

parse apache logs
- processor: apache_parser

component: com.hurence.logisland.processor.ModifyId
type: parser
documentation: a parser that modify record Ids
configuration:

id.generation.strategy: hashFields
hash.charset: UTF-8
fields.to.hash: record_raw_value
hash.algorithm: SHA-256

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will
be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

Then you can process to your indexation in Elasticsearch as in “index-apache-logs” example.

 Index JMS messages

Index JMS messages

In the following getting started tutorial, we’ll explain you how to read messages from a JMS topic or queue and index
them into an elasticsearch store.

The JMS data will leverage the JMS connector available as part of logisland connect.

Note

Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

For kafka connect related information please follow as well the connectors section.

1. Installing ActiveMQ

In this tutorial we’ll use Apache ActiveMQ [http://activemq.apache.org/].

Once you downloaded the broker package just extract it in a folder and turn on your first broker by
running:

bin/activemq start

You can verify if your broker is alive by connecting to the ActiveMQ console [http://localhost:8161/admin/] (login with admin/admin)

We are also going to create a test queue that we’ll use for this tutorial.

To do that, in the just use the ActiveMQ console and in the queue section create a queue named test-queue.
You should have your queue created as shown below.

[image: ../_images/activemq-create-queue.png]
As well, since JMS is actually an API, we have to provide to logisland the JMS connection factory and the client libraries. For this we can just copy the activemq-all-5.15.5.jar into the Logisland lib folder.

For instance, assuming you are running Logisland with the provided docker compose, you can just copy with a command like this:

..code-block:: bash

docker cp ./activemq-all-5.15.5.jar logisland:/usr/local/logisland/lib

You can verify that activemq jar has been successfully copied inside the docker container by running

..code-block:: bash

docker exec logisland ls lib/

2. Logisland job setup

For this tutorial please make sure to already have installed elasticsearch and JMS connector modules.

If not you can just do it through the componentes.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-client:1.1.1

bin/components.sh -i com.datamountaineer:kafka-connect-jms:1.1.1

The interesting part in this tutorial is how to setup the JMS stream.

Let’s first focus on the stream configuration and then on its pipeline in order to extract the data in the right way.

The JMS stream

Here we are going to use a special processor (KafkaConnectStructuredSourceProviderService) to use the kafka connect source as input for the structured stream defined below.

Logisland ships by default a kafka connect JMS source implemented by the class com.datamountaineer.streamreactor.connect.jms.source.JMSSourceConnector.

You can find more information about how to configure a JMS source in the official page of the JMS Connector [https://lenses.stream/1.1/connectors/source/jms.html]

Coming back to our example, we would like to read from a queue called test-queue hosted in our local ActiveMQ broker.
For this we will connect as usual to its Openwire channel and we’ll use client acknowledgement to be sure to have an exactly once delivery.

The kafka connect controller service configuration will look like this:

- controllerService: kc_source_service
 component: com.hurence.logisland.stream.spark.provider.KafkaConnectStructuredSourceProviderService
 configuration:
 kc.data.value.converter: com.hurence.logisland.connect.converter.LogIslandRecordConverter
 kc.data.value.converter.properties: |
 record.serializer=com.hurence.logisland.serializer.KryoSerializer
 kc.data.key.converter.properties: |
 schemas.enable=false
 kc.data.key.converter: org.apache.kafka.connect.storage.StringConverter
 kc.worker.tasks.max: 1
 kc.connector.class: com.datamountaineer.streamreactor.connect.jms.source.JMSSourceConnector
 kc.connector.offset.backing.store: memory
 kc.connector.properties: |
 connect.jms.url=tcp://sandbox:61616
 connect.jms.initial.context.factory=org.apache.activemq.jndi.ActiveMQInitialContextFactory
 connect.jms.connection.factory=ConnectionFactory
 connect.jms.kcql=INSERT INTO topic SELECT * FROM test-queue WITHTYPE QUEUE
 connect.progress.enabled=true

The pipeline

Within this stream, a we need to extract the data coming from the JMS.

First of all a FlatMap processor takes out the value and key (required when using StructuredStream as source of records)

processorConfigurations:
 - processor: flatten
 component: com.hurence.logisland.processor.FlatMap
 type: processor
 documentation: "Takes out data from record_value"
 configuration:
 keep.root.record: false

Then, since our JMS messages will carry text data, we need to extract this data from the raw message bytes:

- processor: add_fields
 component: com.hurence.logisland.processor.AddFields
 type: processor
 documentation: "Extract the message as a text"
 configuration:
 conflict.resolution.policy: overwrite_existing
 message_text: ${new String(bytes_payload)}

Now we will as well set the record time as the time when the message has been created (and not received).
This thanks to a NormalizeFields processor:

- processor: rename_fields
 component: com.hurence.logisland.processor.NormalizeFields
 type: processor
 documentation: "Change the record time according to message_timestamp field"
 configuration:
 conflict.resolution.policy: overwrite_existing
 record_time: message_timestamp

Last but not least, a BulkAddElasticsearch takes care of indexing a Record sending it to elasticsearch.

- processor: es_publisher
 component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
 type: processor
 documentation: a processor that indexes processed events in elasticsearch
 configuration:
 elasticsearch.client.service: elasticsearch_service
 default.index: logisland
 default.type: event
 timebased.index: yesterday
 es.index.field: search_index
 es.type.field: record_type

In details, this processor makes use of a Elasticsearch_5_4_0_ClientService controller service to interact with our Elasticsearch 5.X backend
running locally (and started as part of the docker compose configuration we mentioned above).

Here below its configuration:

- controllerService: elasticsearch_service
 component: com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_ClientService
 type: service
 documentation: elasticsearch service
 configuration:
 hosts: sandbox:9300
 cluster.name: es-logisland
 batch.size: 5000

3. Launch the script

Connect a shell to your logisland container to launch the following streaming jobs.

bin/logisland.sh --conf conf/index-jms-messages.yml

4. Do some insights and visualizations

With ElasticSearch, you can use Kibana.

Open up your browser and go to http://sandbox:5601/app/kibana#/ and you should be able to explore the blockchain transactions.

Configure a new index pattern with logisland.* as the pattern name and @timestamp as the time value field.

[image: ../_images/kibana-configure-index.png]
Now just send some message thanks to the ActiveMQ console.

Click on the Send link on the top of the console main page and specify the destination to test-queue and type the message you like. You should have something like this:

[image: ../_images/activemq-send-message.png]
Now that the message have been consumed (you can also verify this thanks to the ActiveMQ console) you can come back to kibana and go to Explore panel for the latest 15’ time window you’ll only see logisland process_metrics events which give you
insights about the processing bandwidth of your streams.

[image: ../_images/kibana-jms-records.png]

5. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process
your data

[image: ../_images/spark-job-monitoring.png]
Another tool can help you to tweak and monitor your processing http://sandbox:9000/

[image: ../_images/kafka-mgr.png]

 Index blockchain transactions

Index blockchain transactions

In the following getting started tutorial, we’ll explain you how to leverage logisland connectors flexibility
in order process in real time every transaction emitted by the bitcoin blockchain platform and index each record
into an elasticsearch platform.

This will allow us to run some dashboarding and visual data analysis as well.

Note

Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

For kafka connect related information please follow as well the connectors section.

1. Logisland job setup

Install the blockchain connector if not already done.

bin/components.sh -i com.datamountaineer:kafka-connect-blockchain:1.1.1

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here for ElasticSearch :

vim conf/index-blockchain-transactions.yml

We will start by explaining each part of the config file.

The engine

The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) to run in local mode.

engine:
 component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
 type: engine
 documentation: Index some blockchain transactions with logisland
 configuration:
 spark.app.name: BlockchainTest
 spark.master: local[*]
 spark.driver.memory: 512M
 spark.driver.cores: 1
 spark.executor.memory: 512M
 spark.executor.instances: 4
 spark.executor.cores: 2
 spark.yarn.queue: default
 spark.yarn.maxAppAttempts: 4
 spark.yarn.am.attemptFailuresValidityInterval: 1h
 spark.yarn.max.executor.failures: 20
 spark.yarn.executor.failuresValidityInterval: 1h
 spark.task.maxFailures: 8
 spark.serializer: org.apache.spark.serializer.KryoSerializer
 spark.streaming.batchDuration: 2000
 spark.streaming.backpressure.enabled: false
 spark.streaming.blockInterval: 500
 spark.streaming.kafka.maxRatePerPartition: 10000
 spark.streaming.timeout: -1
 spark.streaming.unpersist: false
 spark.streaming.kafka.maxRetries: 3
 spark.streaming.ui.retainedBatches: 200
 spark.streaming.receiver.writeAheadLog.enable: false
 spark.ui.port: 4040

 The `controllerServiceConfigurations` part is here to define all services that be shared by processors within the whole job.

 ==================
 The parsing stream
 ==================

 Here we are going to use a special processor (``KafkaConnectStructuredSourceProviderService``) to use the kafka connect source as input for the structured stream defined below.

 For this example, we are going to use the source *com.datamountaineer.streamreactor.connect.blockchain.source.BlockchainSourceConnector*
 that opens a secure websocket connections to the blockchain subscribing to any transaction update stream.

 .. code-block:: yaml

 ControllerServiceConfigurations:
 - controllerService: kc_source_service
 component: com.hurence.logisland.stream.spark.provider.KafkaConnectStructuredSourceProviderService
 configuration:
 kc.data.value.converter: com.hurence.logisland.connect.converter.LogIslandRecordConverter
 kc.data.value.converter.properties: |
 record.serializer=com.hurence.logisland.serializer.KryoSerializer
 kc.data.key.converter.properties: |
 schemas.enable=false
 kc.data.key.converter: org.apache.kafka.connect.storage.StringConverter
 kc.worker.tasks.max: 1
 kc.connector.class: com.datamountaineer.streamreactor.connect.blockchain.source.BlockchainSourceConnector
 kc.connector.offset.backing.store: memory
 kc.connector.properties: |
 connect.blockchain.source.url=wss://ws.blockchain.info/inv
 connect.blockchain.source.kafka.topic=blockchain

Note

Our source is providing structured value hence we convert with LogInslandRecordConverter serializing with Kryo

Kafka sink configuration
- controllerService: kafka_out_service
 component: com.hurence.logisland.stream.spark.structured.provider.KafkaStructuredStreamProviderService
 configuration:
 kafka.output.topics: logisland_raw
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1

So that, we can now define the parsing stream using those source and sink

######### parsing stream ##############
- stream: parsing_stream_source
 component: com.hurence.logisland.stream.spark.structured.StructuredStream
 documentation: "Takes records from the kafka source and distributes related partitions over a kafka topic. Records are then handed off to the indexing stream"
 configuration:
 read.topics: /a/in
 read.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 read.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
 read.topics.client.service: kc_source_service
 write.topics: logisland_raw
 write.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 write.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
 write.topics.client.service: kafka_out_service

Within this stream, a FlatMap processor takes out the value and key (required when using StructuredStream as source of records)

processorConfigurations:
 - processor: flatten
 component: com.hurence.logisland.processor.FlatMap
 type: processor
 documentation: "Takes out data from record_value"
 configuration:
 keep.root.record: false
 copy.root.record.fields: true

The indexing stream

Inside this engine, you will run a Kafka stream of processing, so we set up input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the logs sent in logisland_raw topic and push the processing output into logisland_events topic.

Note

We want to specify an Avro output schema to validate our output records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

- stream: parsing_stream_source
 component: com.hurence.logisland.stream.spark.structured.StructuredStream
 documentation: "Takes records from the kafka source and distributes related partitions over a kafka topic. Records are then handed off to the indexing stream"
 configuration:
 read.topics: /a/in
 read.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 read.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
 read.topics.client.service: kc_source_service
 write.topics: logisland_raw
 write.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 write.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
 write.topics.client.service: kafka_out_service

Within this stream, a BulkAddElasticsearch takes care of indexing a Record sending it to elasticsearch.

- processor: es_publisher
 component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
 type: processor
 documentation: a processor that indexes processed events in elasticsearch
 configuration:
 elasticsearch.client.service: elasticsearch_service
 default.index: logisland
 default.type: event
 timebased.index: yesterday
 es.index.field: search_index
 es.type.field: record_type

In details, this processor makes use of a Elasticsearch_5_4_0_ClientService controller service to interact with our Elasticsearch 5.X backend
running locally (and started as part of the docker compose configuration we mentioned above).

Here below its configuration:

- controllerService: elasticsearch_service
 component: com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_ClientService
 type: service
 documentation: elasticsearch service
 configuration:
 hosts: sandbox:9300
 cluster.name: es-logisland
 batch.size: 5000

2. Launch the script

Connect a shell to your logisland container to launch the following streaming jobs.

bin/logisland.sh --conf conf/index-blockchain-transactions.yml

3. Do some insights and visualizations

With ElasticSearch, you can use Kibana.

Open up your browser and go to http://sandbox:5601/app/kibana#/ and you should be able to explore the blockchain transactions.

Configure a new index pattern with logisland.* as the pattern name and @timestamp as the time value field.

[image: ../_images/kibana-configure-index.png]
Then if you go to Explore panel for the latest 15’ time window you’ll only see logisland process_metrics events which give you
insights about the processing bandwidth of your streams.

[image: ../_images/kibana-blockchain-records.png]
You can try as well to create some basic visualization in order to draw the total satoshi transacted amount (aggregating sums of out.value field).

Below a nice example:

[image: ../_images/kibana-blockchain-dashboard.png]
Ready to discover which addresses received most of the money? Give it a try ;-)

4. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process
your data

[image: ../_images/spark-job-monitoring.png]
Another tool can help you to tweak and monitor your processing http://sandbox:9000/

[image: ../_images/kafka-mgr.png]

 Extract Records from Excel File

Extract Records from Excel File

In the following getting started tutorial we’ll drive you through the process of extracting data from any Excel file with LogIsland platform.

Both XLSX and old XLS file format are supported.

Note

Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

Note, it is possible to store data in different datastores. In this tutorial, we will see the case of ElasticSearch only.

1.Install required components

For this tutorial please make sure to already have installed elasticsearch and excel modules.
If not you can just do it through the componentes.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-client:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-processor-excel:1.1.1

2. Logisland job setup

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here for ElasticSearch :

docker exec -i -t logisland vim conf/index-excel-spreadsheet.yml

We will start by explaining each part of the config file.

An Engine is needed to handle the stream processing. This conf/extract-excel-data.yml configuration file defines a stream processing job setup.
The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) to run in local mode with 2 cpu cores and 2G of RAM.

 engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Index records of an excel file with LogIsland
configuration:
 spark.app.name: IndexExcelDemo
 spark.master: local[4]
 spark.driver.memory: 1G
 spark.driver.cores: 1
 spark.executor.memory: 2G
 spark.executor.instances: 4
 spark.executor.cores: 2
 spark.yarn.queue: default
 spark.yarn.maxAppAttempts: 4
 spark.yarn.am.attemptFailuresValidityInterval: 1h
 spark.yarn.max.executor.failures: 20
 spark.yarn.executor.failuresValidityInterval: 1h
 spark.task.maxFailures: 8
 spark.serializer: org.apache.spark.serializer.KryoSerializer
 spark.streaming.batchDuration: 1000
 spark.streaming.backpressure.enabled: false
 spark.streaming.unpersist: false
 spark.streaming.blockInterval: 500
 spark.streaming.kafka.maxRatePerPartition: 3000
 spark.streaming.timeout: -1
 spark.streaming.unpersist: false
 spark.streaming.kafka.maxRetries: 3
 spark.streaming.ui.retainedBatches: 200
 spark.streaming.receiver.writeAheadLog.enable: false
 spark.ui.port: 4050

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole job, here an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

- controllerService: elasticsearch_service
 component: com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_ClientService
 type: service
 documentation: elasticsearch service
 configuration:
 hosts: sandbox:9300
 cluster.name: es-logisland
 batch.size: 5000

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the logs sent in logisland_raw topic and push the processing output into logisland_events topic.

We can define some serializers to marshall all records from and to a topic.
We assume that the stream will be serializing the input file as a byte array in a single record. Reason why we will use a ByteArraySerialiser in the configuration below.

main processing stream
- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that converts raw excel file content into structured log records
 configuration:
 kafka.input.topics: logisland_raw
 kafka.output.topics: logisland_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.BytesArraySerializer
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1

Within this stream, an ExcelExtract processor takes a byte array excel file content and computes a list of Record.

parse excel cells into records
 - processor: excel_parser
 component: com.hurence.logisland.processor.excel.ExcelExtract
 type: parser
 documentation: a parser that produce events from an excel file
 configuration:
 record.type: excel_record
 skip.rows: 1
 field.names: segment,country,product,discount_band,units_sold,manufacturing,sale_price,gross_sales,discounts,sales,cogs,profit,record_time,month_number,month_name,year

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will
be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

Note

Please note that we are mapping the excel column Date to be the timestamp of the produced record (record_time field) in order to use this as time reference in elasticsearch/kibana (see below).

The second processor will handle Records produced by the ExcelExtract to index them into elasticsearch

add to elasticsearch
- processor: es_publisher
 component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
 type: processor
 documentation: a processor that trace the processed events
 configuration:
 elasticsearch.client.service: elasticsearch_service
 default.index: logisland
 default.type: event
 timebased.index: yesterday
 es.index.field: search_index
 es.type.field: record_type

3. Launch the script

For this tutorial we will handle an excel file. We will process it with an ExcelExtract that will produce a bunch of Records and we’ll send them to Elastiscearch
Connect a shell to your logisland container to launch the following streaming jobs.

For ElasticSearch :

docker exec -i -t logisland bin/logisland.sh --conf conf/index-excel-spreadsheet.yml

4. Inject an excel file into the system

Now we’re going to send a file to logisland_raw Kafka topic.

For testing purposes, we will use kafkacat [https://github.com/edenhill/kafkacat],
a generic command line non-JVM Apache Kafka producer and consumer which can be easily installed.

Note

Sending raw files through kafka is not recommended for production use since kafka is designed for high throughput and not big message size.

The configuration above is suited to work with the example file Financial Sample.xlsx.

Let’s send this file in a single message to LogIsland with kafkacat to logisland_raw Kafka topic

kafkacat -P -t logisland_raw -v -b sandbox:9092 ./Financial\ Sample.xlsx

5. Inspect the logs

Kibana

With ElasticSearch, you can use Kibana.

Open up your browser and go to http://sandbox:5601/ [http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:'1995-05-08T12:14:53.216Z',mode:absolute,to:'1995-11-25T05:30:52.010Z'))&_a=(columns:!(_source),filters:!(),index:'li-*',interval:auto,query:(query_string:(analyze_wildcard:!t,query:usa)),sort:!('@timestamp',desc),vis:(aggs:!((params:(field:host,orderBy:'2',size:20),schema:segment,type:terms),(id:'2',schema:metric,type:count)),type:histogram))&indexPattern=li-*&type=histogram] and you should be able to explore your excel records.

Configure a new index pattern with logisland.* as the pattern name and @timestamp as the time value field.

[image: ../_images/kibana-configure-index.png]
Then if you go to Explore panel for the latest 5 years time window. You are now able to play with the indexed data.

[image: ../_images/kibana-excel-logs.png]
Thanks logisland! :-)

 IIoT with MQTT and Logisland Data-Historian

IIoT with MQTT and Logisland Data-Historian

In the following getting tutorial we’ll drive you through the process of IIoT enablement with LogIsland platform.

Note

Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

docker run -td –name kapua-sql -p 8181:8181 -p 3306:3306 kapua/kapua-sql:0.3.2
docker run -td –name kapua-elasticsearch -p 9200:9200 -p 9300:9300 elasticsearch:5.4.0 -Ecluster.name=kapua-datastore -Ediscovery.type=single-node -Etransport.host=_site_ -Etransport.ping_schedule=-1 -Etransport.tcp.connect_timeout=30s
docker run -td –name kapua-broker –link kapua-sql:db –link kapua-elasticsearch:es –env commons.db.schema.update=true -p 1883:1883 -p 61614:61614 kapua/kapua-broker:0.3.2
docker run -td –name kapua-console –link kapua-sql:db –link kapua-broker:broker –link kapua-elasticsearch:es –env commons.db.schema.update=true -p 8080:8080 kapua/kapua-console:0.3.2
docker run -td –name kapua-api –link kapua-sql:db –link kapua-broker:broker –link kapua-elasticsearch:es –env commons.db.schema.update=true -p 8081:8080 kapua/kapua-api:0.3.2

docker run -td –name logisland-historian -p 8983:8983 hurence/chronix:latest

docker run -it –env MQTT_BROKER_URL=tcp://10.20.20.87:1883 –env SOLR_CONNECTION=http://10.20.20.87:8983/solr –name kapua-logisland hurence/logisland:0.12.0 bin/logisland.sh –conf conf/mqtt-to-historian.yml

Note, it is possible to store data in different datastores. In this tutorial, we will see the case of ElasticSearch and Solr.

1. Logisland job setup

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here for ElasticSearch :

docker exec -i -t logisland vim conf/index-apache-logs.yml

And here for Solr :

docker exec -i -t logisland vim conf/index-apache-logs-solr.yml

We will start by explaining each part of the config file.

An Engine is needed to handle the stream processing. This conf/index-apache-logs.yml configuration file defines a stream processing job setup.
The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) to run in local mode with 2 cpu cores and 2G of RAM.

engine:
 component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
 type: engine
 documentation: Index some apache logs with logisland
 configuration:
 spark.app.name: IndexApacheLogsDemo
 spark.master: local[2]
 spark.driver.memory: 1G
 spark.driver.cores: 1
 spark.executor.memory: 2G
 spark.executor.instances: 4
 spark.executor.cores: 2
 spark.yarn.queue: default
 spark.yarn.maxAppAttempts: 4
 spark.yarn.am.attemptFailuresValidityInterval: 1h
 spark.yarn.max.executor.failures: 20
 spark.yarn.executor.failuresValidityInterval: 1h
 spark.task.maxFailures: 8
 spark.serializer: org.apache.spark.serializer.KryoSerializer
 spark.streaming.batchDuration: 1000
 spark.streaming.backpressure.enabled: false
 spark.streaming.unpersist: false
 spark.streaming.blockInterval: 500
 spark.streaming.kafka.maxRatePerPartition: 3000
 spark.streaming.timeout: -1
 spark.streaming.unpersist: false
 spark.streaming.kafka.maxRetries: 3
 spark.streaming.ui.retainedBatches: 200
 spark.streaming.receiver.writeAheadLog.enable: false
 spark.ui.port: 4050

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole job, here an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

- controllerService: elasticsearch_service
 component: com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_ClientService
 type: service
 documentation: elasticsearch service
 configuration:
 hosts: sandbox:9300
 cluster.name: es-logisland
 batch.size: 5000

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the logs sent in logisland_raw topic and push the processing output into logisland_events topic.

Note

We want to specify an Avro output schema to validate our ouput records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that converts raw apache logs into structured log records
 configuration:
 kafka.input.topics: logisland_raw
 kafka.output.topics: logisland_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of fields.

parse apache logs
- processor: apache_parser
 component: com.hurence.logisland.processor.SplitText
 type: parser
 documentation: a parser that produce events from an apache log REGEX
 configuration:
 value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
 value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,http_status,bytes_out

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will
be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

The second processor will handle Records produced by the SplitText to index them into elasticsearch

add to elasticsearch
- processor: es_publisher
 component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
 type: processor
 documentation: a processor that trace the processed events
 configuration:
 elasticsearch.client.service: elasticsearch_service
 default.index: logisland
 default.type: event
 timebased.index: yesterday
 es.index.field: search_index
 es.type.field: record_type

Solr

In the case of Solr, we have to declare another service :

Datastore service using Solr 6.6.2 - 5.5.5 also available
- controllerService: datastore_service
 component: com.hurence.logisland.service.solr.Solr_6_6_2_ClientService
 type: service
 documentation: "SolR 6.6.2 service"
 configuration:
 solr.cloud: false
 solr.connection.string: http://sandbox:8983/solr
 solr.collection: solr-apache-logs
 solr.concurrent.requests: 4
 flush.interval: 2000
 batch.size: 1000

With this configuration, Solr is used in standalone mode but you can also use the cloud mode by changing the corresponding config.

Note

You have to create the core/collection manually with the following fields : src_ip, identd, user, bytes_out,
http_method, http_version, http_query, http_status

Then, the second processor have to send data to Solr :

all the parsed records are added to solr by bulk
- processor: solr_publisher
 component: com.hurence.logisland.processor.datastore.BulkPut
 type: processor
 documentation: "indexes processed events in SolR"
 configuration:
 datastore.client.service: datastore_service

2. Launch the script

For this tutorial we will handle some apache logs with a splitText parser and send them to Elastiscearch
Connect a shell to your logisland container to launch the following streaming jobs.

For ElasticSearch :

docker exec -i -t logisland bin/logisland.sh --conf conf/index-apache-logs.yml

For Solr :

docker exec -i -t logisland bin/logisland.sh --conf conf/index-apache-logs-solr.yml

3. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic
but there’s a super useful tool in the Kafka ecosystem : kafkacat [https://github.com/edenhill/kafkacat],
a generic command line non-JVM Apache Kafka producer and consumer which can be easily installed.

If you don’t have your own httpd logs available, you can use some freely available log files from
NASA-HTTP [http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html] web site access:

	Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz]

	Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz]

Let’s send the first 500000 lines of NASA http access over July 1995 to LogIsland with kafkacat to logisland_raw Kafka topic

cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -500000 NASA_access_log_Jul95 | kafkacat -b sandbox:9092 -t logisland_raw

4. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process
your data

[image: ../_images/spark-job-monitoring.png]
Another tool can help you to tweak and monitor your processing http://sandbox:9000/

[image: ../_images/kafka-mgr.png]

5. Inspect the logs

Kibana

With ElasticSearch, you can use Kibana.

Open up your browser and go to http://sandbox:5601/ [http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:'1995-05-08T12:14:53.216Z',mode:absolute,to:'1995-11-25T05:30:52.010Z'))&_a=(columns:!(_source),filters:!(),index:'li-*',interval:auto,query:(query_string:(analyze_wildcard:!t,query:usa)),sort:!('@timestamp',desc),vis:(aggs:!((params:(field:host,orderBy:'2',size:20),schema:segment,type:terms),(id:'2',schema:metric,type:count)),type:histogram))&indexPattern=li-*&type=histogram] and you should be able to explore your apache logs.

Configure a new index pattern with logisland.* as the pattern name and @timestamp as the time value field.

[image: ../_images/kibana-configure-index.png]
Then if you go to Explore panel for the latest 15’ time window you’ll only see logisland process_metrics events which give you
insights about the processing bandwidth of your streams.

[image: ../_images/kibana-logisland-metrics.png]
As we explore data logs from july 1995 we’ll have to select an absolute time filter from 1995-06-30 to 1995-07-08 to see the events.

[image: ../_images/kibana-apache-logs.png]

Solr

With Solr, you can directly use the solr web ui.

Open up your browser and go to http://sandbox:8983/solr and you should be able to view your apache logs.

In non cloud mode, use the core selector, to select the core `solr-apache-logs` :

[image: ../_images/solr-dashboard.png]
Then, go to query and by clicking to Execute Query, you will see some data from your Apache logs :

[image: ../_images/solr-query.png]

 IIoT with OPC and Logisland

IIoT with OPC and Logisland

In this tutorial we’ll show you how to ingest IIoT data from an OPC-UA server and process it with Logisland, storing everything into an elasticsearch database.

In particular, we’ll use the Prosys OPC-UA simulation server you can download for free here [https://www.prosysopc.com/products/opc-ua-simulation-server/]

Note

You will need to have a logisland Docker environment. Please follow the prerequisites section for more information.

Please also remember to always turn on the simulation server before running the logisland job.

1.Install required components

For this tutorial please make sure to already have installed elasticsearch and OPC modules.
If not you can just do it through the componentes.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-client:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-connector-opc:1.1.1

2. Logisland job setup

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here for ElasticSearch :

docker exec -i -t logisland vim conf/opc-iiot.yml

We will start by explaining each part of the config file.

The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) to run in local mode with 1 cpu cores and 512M of RAM.

engine:
 component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
 type: engine
 documentation: Index some OPC-UA tagw with Logisland
 configuration:
 spark.app.name: OpcUaLogisland
 spark.master: local[2]
 spark.driver.memory: 512M
 spark.driver.cores: 1
 spark.executor.memory: 512M
 spark.executor.instances: 4
 spark.executor.cores: 1
 spark.yarn.queue: default
 spark.yarn.maxAppAttempts: 4
 spark.yarn.am.attemptFailuresValidityInterval: 1h
 spark.yarn.max.executor.failures: 20
 spark.yarn.executor.failuresValidityInterval: 1h
 spark.task.maxFailures: 8
 spark.serializer: org.apache.spark.serializer.KryoSerializer
 spark.streaming.batchDuration: 3000
 spark.streaming.backpressure.enabled: false
 spark.streaming.blockInterval: 500
 spark.streaming.kafka.maxRatePerPartition: 10000
 spark.streaming.timeout: -1
 spark.streaming.unpersist: false
 spark.streaming.kafka.maxRetries: 3
 spark.streaming.ui.retainedBatches: 200
 spark.streaming.receiver.writeAheadLog.enable: false
 spark.ui.port: 4040

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole job.

Here we have the OPC-UA source with all the connection parameters.

- controllerService: kc_source_service
 component: com.hurence.logisland.stream.spark.provider.KafkaConnectStructuredSourceProviderService
 documentation: Kafka connect OPC-UA source service
 type: service
 configuration:
 kc.connector.class: com.hurence.logisland.connect.opc.ua.OpcUaSourceConnector
 kc.data.value.converter: com.hurence.logisland.connect.converter.LogIslandRecordConverter
 kc.data.value.converter.properties: |
 record.serializer=com.hurence.logisland.serializer.KryoSerializer
 kc.data.key.converter.properties: |
 schemas.enable=false
 kc.data.key.converter: org.apache.kafka.connect.storage.StringConverter
 kc.worker.tasks.max: 1
 kc.connector.offset.backing.store: memory
 kc.connector.properties: |
 session.publicationRate=PT1S
 connection.socketTimeoutMillis=10000
 server.uri=opc.tcp://localhost:53530/OPCUA/SimulationServer
 tags.id=ns=5;s=Sawtooth1
 tags.sampling.rate=PT0.5S
 tags.stream.mode=SUBSCRIBE

In particular, we have

	A tag to be read: “ns=5;s=Sawtooth1”

	The tag will be subscribed and sampled each 0.5s

	The data will be published by the opc server each second (session.publicationRate)

	Please use your own opc server uri, in our case opc.tcp://localhost:53530/OPCUA/SimulationServer

Full connector documentation is on javadoc of class com.hurence.logisland.connect.opc.ua.OpcUaSourceConnector

Then we also define her Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

- controllerService: elasticsearch_service
 component: com.hurence.logisland.service.elasticsearch.Elasticsearch_5_4_0_ClientService
 type: service
 documentation: elasticsearch service
 configuration:
 hosts: ${ES_HOSTS}
 cluster.name: ${ES_CLUSTER_NAME}
 batch.size: 5000

Inside this engine you will run a spark structured stream, taking records from the previously defined source and letting data flow through the processing pipeline till the console output.

- stream: ingest_stream
 component: com.hurence.logisland.stream.spark.structured.StructuredStream
 configuration:
 read.topics: /a/in
 read.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 read.topics.key.serializer: com.hurence.logisland.serializer.StringSerializer
 read.topics.client.service: kc_source_service
 write.topics: /a/out
 write.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 write.topics.key.serializer: com.hurence.logisland.serializer.StringSerializer
 write.topics.client.service: console_service

And now it’s time to describe the parsing pipeline.

First, we need to extract the record thanks to a FlatMap processor

- processor: flatten
 component: com.hurence.logisland.processor.FlatMap
 type: processor
 documentation: "extract from root record"
 configuration:
 keep.root.record: false
 copy.root.record.fields: true

Now that the record is well-formed, we want to set the record time to be the same of the one given by the source (and stored on the field tag_sampled_timestamp).

For this, we use a NormalizeFields processor.

- processor: rename_fields
 component: com.hurence.logisland.processor.NormalizeFields
 type: processor
 documentation: "set record time to tag server generation time"
 configuration:
 conflict.resolution.policy: overwrite_existing
 record_time: tag_sampled_timestamp

Then, the last processor will index our records into elasticsearch

add to elasticsearch
- processor: es_publisher
 component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
 type: processor
 documentation: a processor that trace the processed events
 configuration:
 elasticsearch.client.service: elasticsearch_service
 default.index: logisland
 default.type: event
 timebased.index: yesterday
 es.index.field: search_index
 es.type.field: record_type

3. Launch the script

Just ensure the Prosys OPC-UA server is up and running and that on the Simulation tab the simulation is ticked.

Then you can use the docker-compose file docker-compose-opc-iiot.yml available in the tar gz assembly in conf directory.

Note

If your simulation server is hosted on local and the hostname is different from ‘localhost’. For example if your
server uri is ‘opc.tcp://${hostname}:53530/OPCUA/SimulationServer’. You can add it to logisland container add
a extra_hosts properties to logisland container in docker-compose file so that it is accessible from the container.

logisland:
 network_mode: host
 image: hurence/logisland:1.1.1
 command: tail -f bin/logisland.sh
 environment:
 ZK_QUORUM: localhost:2181
 ES_HOSTS: localhost:9300
 ES_CLUSTER_NAME: es-logisland
 extra_hosts:
 - "${hostname}:127.0.0.1"

Then you can execute:

docker exec -i -t logisland bin/logisland.sh --conf conf/opc-iiot.yml

Note

Be sure to have added your server uri in conf/opc-iiot.yml file.

4. Inspect the records

With ElasticSearch, you can use Kibana.

Open up your browser and go to http://localhost:5601/ [http://localhost:5601/app/kibana#/discover?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:'1995-05-08T12:14:53.216Z',mode:absolute,to:'1995-11-25T05:30:52.010Z'))&_a=(columns:!(_source),filters:!(),index:'li-*',interval:auto,query:(query_string:(analyze_wildcard:!t,query:usa)),sort:!('@timestamp',desc),vis:(aggs:!((params:(field:host,orderBy:'2',size:20),schema:segment,type:terms),(id:'2',schema:metric,type:count)),type:histogram))&indexPattern=li-*&type=histogram] and you should be able to explore your apache logs.

Configure a new index pattern with logisland.* as the pattern name and @timestamp as the time value field.

[image: ../_images/kibana-configure-index.png]
Then if you go to Explore panel for the latest 15’ time window you’ll only see logisland process_metrics events which give you
insights about the processing bandwidth of your streams.

 Integrate Kafka Connect Sources & Sinks

Integrate Kafka Connect Sources & Sinks

In the following getting started tutorial, we’ll focus on how to seamlessly integrate Kafka connect sources and sinks in logisland.

We can call this functionality Logisland connect.

Note

Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

1. Logisland job setup

For this tutorial please make sure to already have installed elasticsearch and excel modules.

If not you can just do it through the components.sh command line:

bin/components.sh -i com.hurence.logisland:logisland-processor-elasticsearch:1.1.1

bin/components.sh -i com.hurence.logisland:logisland-service-elasticsearch_5_4_0-client:1.1.1

bin/components.sh -i com.github.jcustenborder.kafka.connect:kafka-connect-simulator:0.1.118

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here for ElasticSearch :

docker exec -i -t logisland vim conf/logisland-kafka-connect.yml

We will start by explaining each part of the config file.

The engine

The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) to run in local mode.

engine:
 component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
 type: engine
 documentation: Use Kafka connectors with logisland
 configuration:
 spark.app.name: LogislandConnect
 spark.master: local[2]
 spark.driver.memory: 1G
 spark.driver.cores: 1
 spark.executor.memory: 2G
 spark.executor.instances: 4
 spark.executor.cores: 2
 spark.yarn.queue: default
 spark.yarn.maxAppAttempts: 4
 spark.yarn.am.attemptFailuresValidityInterval: 1h
 spark.yarn.max.executor.failures: 20
 spark.yarn.executor.failuresValidityInterval: 1h
 spark.task.maxFailures: 8
 spark.serializer: org.apache.spark.serializer.KryoSerializer
 spark.streaming.batchDuration: 1000
 spark.streaming.backpressure.enabled: false
 spark.streaming.unpersist: false
 spark.streaming.blockInterval: 500
 spark.streaming.kafka.maxRatePerPartition: 3000
 spark.streaming.timeout: -1
 spark.streaming.unpersist: false
 spark.streaming.kafka.maxRetries: 3
 spark.streaming.ui.retainedBatches: 200
 spark.streaming.receiver.writeAheadLog.enable: false
 spark.ui.port: 4050

The controllerServiceConfigurations part is here to define all services that be shared by processors within the whole job.

The parsing stream

Here we are going to use a special processor (KafkaConnectStructuredSourceProviderService) to use the kafka connect source as input for the structured stream defined below.

For this example, we are going to use the source com.github.jcustenborder.kafka.connect.simulator.SimulatorSourceConnector that generates records containing fake personal data at rate of 100 messages/s.

Our source service
- controllerService: kc_source_service
 component: com.hurence.logisland.stream.spark.provider.KafkaConnectStructuredSourceProviderService
 documentation: A kafka source connector provider reading from its own source and providing structured streaming to the underlying layer
 configuration:
 # We will use the logisland record converter for both key and value
 kc.data.value.converter: com.hurence.logisland.connect.converter.LogIslandRecordConverter
 # Use kryo to serialize the inner data
 kc.data.value.converter.properties: |
 record.serializer=com.hurence.logisland.serializer.KryoSerializer

 kc.data.key.converter: com.hurence.logisland.connect.converter.LogIslandRecordConverter
 # Use kryo to serialize the inner data
 kc.data.key.converter.properties: |
 record.serializer=com.hurence.logisland.serializer.KryoSerializer
 # Only one task to handle source input (unique)
 kc.worker.tasks.max: 1
 # The kafka source connector to wrap (here we're using a simulator source)
 kc.connector.class: com.github.jcustenborder.kafka.connect.simulator.SimulatorSourceConnector
 # The properties for the connector (as per connector documentation)
 kc.connector.properties: |
 key.schema.fields=email
 topic=simulator
 value.schema.fields=email,firstName,middleName,lastName,telephoneNumber,dateOfBirth
 # We are using a standalone source for testing. We can store processed offsets in memory
 kc.connector.offset.backing.store: memory

Note

The parameter kc.connector.properties contains the connector properties as you would have defined if you were using vanilla kafka connect.

As well, we are using a memory offset backing store. In a distributed scenario, you may have chosen a kafka topic based one.

Since each stream can be read and written, we are going to define as well a Kafka topic sink (KafkaStructuredStreamProviderService) that will be used as output for the structured stream defined below.

Kafka sink configuration
- controllerService: kafka_out_service
 component: com.hurence.logisland.stream.spark.structured.provider.KafkaStructuredStreamProviderService
 configuration:
 kafka.output.topics: logisland_raw
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1

So that, we can now define the parsing stream using those source and sink

######### parsing stream ##############
- stream: parsing_stream_source
 component: com.hurence.logisland.stream.spark.structured.StructuredStream
 documentation: "Takes records from the kafka source and distributes related partitions over a kafka topic. Records are then handed off to the indexing stream"
 configuration:
 read.topics: /a/in
 read.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 read.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
 read.topics.client.service: kc_source_service
 write.topics: logisland_raw
 write.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 write.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
 write.topics.client.service: kafka_out_service

Within this stream, a FlatMap processor takes out the value and key (required when using StructuredStream as source of records)

processorConfigurations:
 - processor: flatten
 component: com.hurence.logisland.processor.FlatMap
 type: processor
 documentation: "Takes out data from record_value"
 configuration:
 keep.root.record: false
 copy.root.record.fields: true

The indexing stream

Inside this engine, you will run a Kafka stream of processing, so we set up input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the logs sent in logisland_raw topic and push the processing output into logisland_events topic.

Note

We want to specify an Avro output schema to validate our output records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

- stream: parsing_stream_source
 component: com.hurence.logisland.stream.spark.structured.StructuredStream
 documentation: "Takes records from the kafka source and distributes related partitions over a kafka topic. Records are then handed off to the indexing stream"
 configuration:
 read.topics: /a/in
 read.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 read.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
 read.topics.client.service: kc_source_service
 write.topics: logisland_raw
 write.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 write.topics.key.serializer: com.hurence.logisland.serializer.KryoSerializer
 write.topics.client.service: kafka_out_service

Within this stream, a DebugStream processor takes a log line as a String and computes a Record as a sequence of fields.

processorConfigurations:
 # We just print the received records (but you may do something more interesting!)
 - processor: stream_debugger
 component: com.hurence.logisland.processor.DebugStream
 type: processor
 documentation: debug records
 configuration:
 event.serializer: json

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will be printed in the console and pushed back to Kafka in the logisland_events topic.

2. Launch the script

Connect a shell to your logisland container to launch the following streaming jobs.

docker exec -i -t logisland bin/logisland.sh --conf conf/logisland-kafka-connect.yml

3. Examine your console output

Since we put a DebugStream processor, messages produced by our source connectors are then output to the console in json.

18/04/06 11:17:06 INFO DebugStream: {
 "id" : "9b17a9ac-97c4-44ef-9168-d298e8c53d42",
 "type" : "kafka_connect",
 "creationDate" : 1523006216376,
 "fields" : {
 "record_id" : "9b17a9ac-97c4-44ef-9168-d298e8c53d42",
 "firstName" : "London",
 "lastName" : "Marks",
 "telephoneNumber" : "005-694-4540",
 "record_key" : {
 "email" : "londonmarks@fake.com"
 },
 "middleName" : "Anna",
 "dateOfBirth" : 836179200000,
 "record_time" : 1523006216376,
 "record_type" : "kafka_connect",
 "email" : "londonmarks@fake.com"
 }
}

4. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process
your data

[image: ../_images/spark-job-monitoring.png]
Another tool can help you to tweak and monitor your processing http://sandbox:9000/

[image: ../_images/kafka-mgr.png]

 Index JDBC messages

Index JDBC messages

In the following getting started tutorial, we’ll explain you how to read messages from a JDBC table.

The JDBC data will leverage the JDBC connector available as part of logisland connect.

Note

Be sure to know of to launch a logisland Docker environment by reading the prerequisites section

For kafka connect related information please follow as well the connectors section.

1.Install required components

For this tutorial please make sure to already have installed the kafka connect jdbc connector.

If not you can just do it through the componentes.sh command line:

bin/components.sh -r com.hurence.logisland.repackaged:kafka-connect-jdbc:5.0.0

2. Installing H2 datatabase

In this tutorial we’ll use H2 Database [http://h2database.com/html/main.html].

H2 is a Java relational database

	Very fast database engine

	Open source

	Written in Java

	Supports standard SQL, JDBC API

	Embedded and Server mode, Clustering support

	Strong security features

	The PostgreSQL ODBC driver can be used

	Multi version concurrency

first wee need an sql engine. Let’s use an `H2 Java database<http://h2database.com/html/main.html>`_.
You can get the jar from their website and copy it to logisland lib folder inside Docker container.
Then run the server on 9999 port

docker cp ./h2-1.4.197.jar logisland:/opt/logisland-1.1.1/lib
docker exec logisland java -jar lib/h2-1.4.197.jar -webAllowOthers -tcpAllowOthers -tcpPort 9999

You can manage your database through the web ui at http://sandbox:8082

With the URL JDBC parameter set to jdbc:h2:tcp://sandbox:9999/~/test you should be able to connect and create the following table

CREATE SCHEMA IF NOT EXISTS logisland;
USE logisland;

DROP TABLE IF EXISTS apache;

CREATE TABLE apache (record_id int auto_increment primary key, bytes_out integer, http_method varchar(20), http_query varchar(200), http_status varchar(10), http_version varchar(10), record_time timestamp, src_ip varchar(50), user varchar(20));

3. Logisland job setup

The interesting part in this tutorial is how to setup the JDBC stream.

Let’s first focus on the stream configuration and then on its pipeline in order to extract the data in the right way.

Here we are going to use a special processor (KafkaConnectStructuredSourceProviderService) to use the kafka connect source as input for the structured stream defined below.

Logisland ships by default a kafka connect JDBC source implemented by the class io.confluent.connect.jdbc.JdbcSourceConnector.

You can find more information about how to configure a JDBC source in the official page of the JDBC Connector [https://docs.confluent.io/current/connect/connect-jdbc/docs/index.html]

Coming back to our example, we would like to read from a table called logisland.apache hosted in our local H2 database.
The kafka connect controller service configuration will look like this:

- controllerService: kc_jdbc_source
 component: com.hurence.logisland.stream.spark.provider.KafkaConnectStructuredSourceProviderService
 configuration:
 kc.data.value.converter: com.hurence.logisland.connect.converter.LogIslandRecordConverter
 kc.data.value.converter.properties: |
 record.serializer=com.hurence.logisland.serializer.KryoSerializer
 kc.data.key.converter.properties:
 kc.data.key.converter: org.apache.kafka.connect.storage.StringConverter
 kc.worker.tasks.max: 1
 kc.partitions.max: 4
 kc.connector.class: io.confluent.connect.jdbc.JdbcSourceConnector
 kc.connector.offset.backing.store: memory
 kc.connector.properties: |
 connection.url=jdbc:h2:tcp://sandbox:9999/~/test
 connection.user=sa
 connection.password=
 mode=incrementing
 incrementing.column.name=RECORD_ID
 query=SELECT * FROM LOGISLAND.APACHE
 topic.prefix=test-jdbc-

Within this stream, a we need to extract the data coming from the JDBC.

First of all a FlatMap processor takes out the value and key (required when using StructuredStream as source of records)

processorConfigurations:
 - processor: flatten
 component: com.hurence.logisland.processor.FlatMap
 type: processor
 documentation: "Takes out data from record_value"
 configuration:
 keep.root.record: false

4. Launch the script

Now run the logisland job that will poll updates of new records inserted into logisland.apache table

docker exec logisland bin/logisland.sh --conf conf/index-jdbc-messages.yml

try to insert a few rows and have a look at the console output

INSERT into apache values (default, 46888, 'GET', '/shuttle/missions/sts-71/images/KSC-95EC-0918.jpg', '200', 'HTTP/1.0', '2010-01-01 10:00:00' , 'net-1-141.eden.com', '-');
INSERT into apache values (default, 110,'GET','/cgi-bin/imagemap/countdown?99,176','302' ,'HTTP/1.0 ', '1995-07-01 04:01:06' ,'205.189.154.54', '-');
INSERT into apache values (default,12040,'GET','/shuttle/missions/sts-71/mission-sts-71.html','200','HTTP/1.0', '1995-07-01 04:04:38','pme607.onramp.awinc.com', '-');
INSERT into apache values (default, 40310,'GET','/shuttle/countdown/count.gif','200' ,'HTTP/1.0 ', '1995-07-01 04:05:18' ,'199.166.39.14', '-');
INSERT into apache values (default, 1.1.18,'GET','/images/dual-pad.gif','200' ,'HTTP/1.0 ', '1995-07-01 04:04:10' ,'isdn6-34.dnai.com', '-');
INSERT into apache values (default, 9867,'GET','/software/winvn/winvn.html','200' ,'HTTP/1.0 ', '1995-07-01 04:02:39' ,'dynip42.efn.org', '-');
INSERT into apache values (default, 1204,'GET','/images/KSC-logosmall.gif','200' ,'HTTP/1.0 ', '1995-07-01 04:04:34' ,'netport-27.iu.net', '-');

it should be something like the following

...
18/09/04 12:47:33 INFO DebugStream: {
 "id" : "f7690b71-f339-4a84-8bd9-a0beb9ba5f92",
 "type" : "kafka_connect",
 "creationDate" : 1536065253831,
 "fields" : {
 "record_id" : "f7690b71-f339-4a84-8bd9-a0beb9ba5f92",
 "RECORD_TIME" : 0,
 "HTTP_STATUS" : "200",
 "SRC_IP" : "netport-27.iu.net",
 "RECORD_ID" : 7,
 "HTTP_QUERY" : "/images/KSC-logosmall.gif",
 "HTTP_VERSION" : "HTTP/1.0 ",
 "USER" : "-",
 "record_time" : 1536065253831,
 "record_type" : "kafka_connect",
 "HTTP_METHOD" : "GET",
 "BYTES_OUT" : 1204
 }
}

 API design

API design

logisland is a framework that you can extend through its API,
you can use it to build your own Processors or to build data processing apps over it.

Java API

You can extend logisland with the Java low-level API as described below.

The primary material : Records

The basic unit of processing is the Record.
A Record is a collection of Field, while a Field has a name, a type and a value.

You can instanciate a Record like in the following code snipet:

String id = "firewall_record1";
String type = "cisco";
Record record = new Record(type).setId(id);

assertTrue(record.isEmpty());
assertEquals(record.size(), 0);

A record is defined by its type and a collection of fields. there are three special fields:

// shortcut for id
assertEquals(record.getId(), id);
assertEquals(record.getField(FieldDictionary.RECORD_ID).asString(), id);

// shortcut for time
assertEquals(record.getTime().getTime(), record.getField(FieldDictionary.RECORD_TIME).asLong().longValue());

// shortcut for type
assertEquals(record.getType(), type);
assertEquals(record.getType(), record.getField(FieldDictionary.RECORD_TYPE).asString());
assertEquals(record.getType(), record.getField(FieldDictionary.RECORD_TYPE).getRawValue());

And the other fields have generic setters, getters and removers

record.setStringField("url_host", "origin-www.20minutes.fr")
 .setField("method", FieldType.STRING, "GET")
 .setField("response_size", FieldType.INT, 452)
 .setField("is_outside_office_hours", FieldType.BOOLEAN, false)
 .setField("tags", FieldType.ARRAY, Arrays.asList("spam", "filter", "mail"));

assertFalse(record.hasField("unkown_field"));
assertTrue(record.hasField("method"));
assertEquals(record.getField("method").asString(), "GET");
assertTrue(record.getField("response_size").asInteger() - 452 == 0);
assertTrue(record.getField("is_outside_office_hours").asBoolean());
record.removeField("is_outside_office_hours");
assertFalse(record.hasField("is_outside_office_hours"));

Fields are strongly typed, you can validate them

Record record = new StandardRecord();
record.setField("request_size", FieldType.INT, 1399);
assertTrue(record.isValid());
record.setField("request_size", FieldType.INT, "zer");
assertFalse(record.isValid());
record.setField("request_size", FieldType.INT, 45L);
assertFalse(record.isValid());
record.setField("request_size", FieldType.LONG, 45L);
assertTrue(record.isValid());
record.setField("request_size", FieldType.DOUBLE, 45.5d);
assertTrue(record.isValid());
record.setField("request_size", FieldType.DOUBLE, 45.5);
assertTrue(record.isValid());
record.setField("request_size", FieldType.DOUBLE, 45L);
assertFalse(record.isValid());
record.setField("request_size", FieldType.FLOAT, 45.5f);
assertTrue(record.isValid());
record.setField("request_size", FieldType.STRING, 45L);
assertFalse(record.isValid());
record.setField("request_size", FieldType.FLOAT, 45.5d);
assertFalse(record.isValid());

The tools to handle processing : Processor

logisland is designed as a component centric framework, so there’s a layer of abstraction to build configurable components.
Basically a component can be Configurable and Configured.

The most common component you’ll use is the Processor

Let’s explain the code of a basic MockProcessor, that doesn’t acheive a really useful work but which is really self-explanatory
we first need to extend AbstractProcessor class (or to implement Processor interface).

public class MockProcessor extends AbstractProcessor {

 private static Logger logger = LoggerFactory.getLogger(MockProcessor.class);
 private static String EVENT_TYPE_NAME = "mock";

Then we have to define a list of supported PropertyDescriptor. All theses properties and validation stuff are handled by
Configurable interface.

public static final PropertyDescriptor FAKE_MESSAGE
 = new PropertyDescriptor.Builder()
 .name("fake.message")
 .description("a fake message")
 .required(true)
 .addValidator(StandardPropertyValidators.NON_EMPTY_VALIDATOR)
 .defaultValue("yoyo")
 .build();

@Override
public final List<PropertyDescriptor> getSupportedPropertyDescriptors() {
 final List<PropertyDescriptor> descriptors = new ArrayList<>();
 descriptors.add(FAKE_MESSAGE);

 return Collections.unmodifiableList(descriptors);
}

then comes the initialization bloc of the component given a ComponentContext (more on this later)

@Override
public void init(final ProcessContext context) {
 logger.info("init MockProcessor");
}

And now the real business part with the process method which handles all the work on the record’s collection.

@Override
public Collection<Record> process(final ProcessContext context, final Collection<Record> collection) {

 final String message = context.getPropertyValue(FAKE_MESSAGE).asString();
 final List<Record> outputRecords = new ArrayList<>(collection);
 outputRecords.forEach(record -> record.setStringField("message", message));

 return outputRecords;
}

The Processor can then be configured through yaml config files

- processor: mock_processor
 component: com.hurence.logisland.util.runner.MockProcessor
 type: parser
 documentation: a parser that produce events for nothing
 configuration:
 fake.message: the super message

Transverse service injection : ControllerService

we often need to share access to external Services across the Processors,
for example bulk buffers or client connections to external data sources.

For example a cache service that could cache K/V tuple across the worker node.
We need to provide an interface API for this service :

public interface CacheService<K,V> extends ControllerService {

 PropertyDescriptor CACHE_SIZE = new PropertyDescriptor.Builder()
 .name("cache.size")
 .description("The maximum number of element in the cache.")
 .required(false)
 .defaultValue("16384")
 .addValidator(StandardValidators.POSITIVE_INTEGER_VALIDATOR)
 .build();

 public V get(K k);

 public void set(K k, V v);
}

And an implementation of the cache contract :

public class LRUKeyValueCacheService<K,V> extends AbstractControllerService implements CacheService<K,V> {

 private volatile Cache<K,V> cache;

 @Override
 public V get(K k) {
 return cache.get(k);
 }

 @Override
 public void set(K k, V v) {
 cache.set(k, v);
 }

 @Override
 @OnEnabled
 public void init(ControllerServiceInitializationContext context) throws InitializationException {
 try {
 this.cache = createCache(context);
 }catch (Exception e){
 throw new InitializationException(e);
 }
 }

 @Override
 public List<PropertyDescriptor> getSupportedPropertyDescriptors() {
 List<PropertyDescriptor> props = new ArrayList<>();
 props.add(CACHE_SIZE);
 return Collections.unmodifiableList(props);
 }

 protected Cache<K,V> createCache(final ControllerServiceInitializationContext context) throws IOException, InterruptedException {
 final int capacity = context.getPropertyValue(CACHE_SIZE).asInteger();
 return new LRUCache<K,V>(capacity);
 }
}

You can then use this service in a custom processor :

public class TestProcessor extends AbstractProcessor {

 static final PropertyDescriptor CACHE_SERVICE = new PropertyDescriptor.Builder()
 .name("cache.service")
 .description("CacheService")
 .identifiesControllerService(CacheService.class)
 .required(true)
 .build();

 @Override
 public boolean hasControllerService() {
 return true;
 }

 @Override
 public List<PropertyDescriptor> getSupportedPropertyDescriptors() {
 List<PropertyDescriptor> propDescs = new ArrayList<>();
 propDescs.add(CACHE_SERVICE);
 return propDescs;
 }

 @Override
 public Collection<Record> process(ProcessContext context, Collection<Record> records) {
 return Collections.emptyList();
 }
}

The injection is done through yaml config files by injecting the instance of lru_cache Service.

...

controllerServiceConfigurations:

 - controllerService: lru_cache
 component: com.hurence.logisland.service.elasticsearch.LRUKeyValueCacheService
 type: service
 documentation: cache service
 configuration:
 cache.size: 5000

streamConfigurations:
 - stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing

 ...

 processorConfigurations:

 - processor: mock_processor
 component: com.hurence.logisland.processor.TestProcessor
 type: parser
 documentation: a parser that produce events for nothing
 configuration:
 cache.service: lru_cache

Chaining processors in a stream : RecordStream

Warning

@todo

Running the processor’s flow : Engine

Warning

@todo

Testing your processors : TestRunner

When you have coded your processor, pretty sure you want to test it with unit test.
The framework provides you with the TestRunner tool for that.
All you need is to instantiate a Testrunner with your Processor and its properties.

final String APACHE_LOG_SCHEMA = "/schemas/apache_log.avsc";
final String APACHE_LOG = "/data/localhost_access.log";
final String APACHE_LOG_FIELDS =
 "src_ip,identd,user,record_time,http_method,http_query,http_version,http_status,bytes_out";
final String APACHE_LOG_REGEX =
 "(\\S+)\\s+(\\S+)\\s+(\\S+)\\s+\\[([\\w:/]+\\s[+\\-]\\d{4})\\]\\s+\"(\\S+)\\s+(\\S+)\\s+(\\S+)\"\\s+(\\S+)\\s+(\\S+)";

final TestRunner testRunner = TestRunners.newTestRunner(new SplitText());
testRunner.setProperty(SplitText.VALUE_REGEX, APACHE_LOG_REGEX);
testRunner.setProperty(SplitText.VALUE_FIELDS, APACHE_LOG_FIELDS);

// check if config is valid
testRunner.assertValid();

Now enqueue some messages as if they were sent to input Kafka topics

testRunner.clearQueues();
testRunner.enqueue(SplitTextTest.class.getResourceAsStream(APACHE_LOG));

Now run the process method and check that every Record has been correctly processed.

testRunner.run();
testRunner.assertAllInputRecordsProcessed();
testRunner.assertOutputRecordsCount(200);
testRunner.assertOutputErrorCount(0);

You can validate that all output records are validated against an avro schema

final RecordValidator avroValidator = new AvroRecordValidator(SplitTextTest.class.getResourceAsStream
testRunner.assertAllRecords(avroValidator);

And check if your output records behave as expected.

MockRecord out = testRunner.getOutputRecords().get(0);
out.assertFieldExists("src_ip");
out.assertFieldNotExists("src_ip2");
out.assertFieldEquals("src_ip", "10.3.10.134");
out.assertRecordSizeEquals(9);
out.assertFieldEquals(FieldDictionary.RECORD_TYPE, "apache_log");
out.assertFieldEquals(FieldDictionary.RECORD_TIME, 1469342728000L);

 Logisland REST API

Logisland REST API

The Logisland REST API for third party applications.

	maxdepth

	3

Introduction

Logisland makes available a standard RESTful API definition to interoperate with any third party application implementing it.

The API should be implemented by a third party application and logisland will regularly poll this endpoint in order to:

	Ask for configuration changes to be triggered.

	Report the latest configuration applied (to ease up resynchronization and business continuity).

Both flows can hence be resumed by the following sequence diagram:

[image: _images/logisland_api_flows.png]

Usage

In terms of API, two degrees of freedom are possible:

	Dataflow:

A dataflow is a set of services and streams allowing a data flowing from one or more sources, being transformed and reach one or more destinations (sinks).

Act at dataflow level if you want to:

	Add/Remove any streaming endpoint

	Change any active stream configuration (e.g. kafka topic)

	Create/Remote/Modify any service

	Pipeline:

A pipeline is a processing chain acting on a data flowing point-to-point.

The api gives you the possibility to have a finer-grained control of what is going of any stream pipeline without perturbing the stream itself.
This means that the processor chain will be dynamically reconfigured without the need of stopping the stream and reconfigure the whole dataflow.

Act at pipeline level if you want to:

	Add/Remove processors in the pipeline

	Change any processor configuration

Hint

As a general rule, the changes will be triggered if the lastUpdated field of the object you are going to modify is fresher than the one known by logisland.

API Specification

This section resumes the Rest API specification. More details are available on the swagger spec.

Operations

GET /dataflows/{dataflowName}

Summary

Retrieves the configuration for a specified dataflow

Description

A dataflow is a set of services and streams allowing a data flowing from one or more sources, being transformed by a pipeline and reach one or more destinations (sinks).Logisland will call this endpoint to know which configuration should be run.

This endpoint also supports HTTP caching (Last-Updated, If-Modified-Since) as per RFC 7232, section 3.3

Parameters

	delim

	

	header

	“Name”, “Located in”, “Required”, “Type”, “Format”, “Properties”, “Description”
:widths: 20, 15, 10, 10, 10, 20, 30

dataflowName | path | Yes | string | | | the dataflow name (aka the logisland job name)

Request

Headers

If-Modified-Since: Timestamp of last response

Responses

200

Return the dataflow configuration.
On logisland side, the following will happen:
- At dataflow level:

	Fully reconfigure a dataflow (stop and then start) if nothing is running (initial state) or if lastUpdated is fresher than the one of the already running dataflow.

In this case be aware that old stream and services will be destroyed and
new ones will be created.

	Do nothing otherwise (keep running the active dataflow)

	At pipeline level:

	The processor chain will be fully reconfigured if and only if the pipeline lastUpdated is fresher than the lastUpdated known by the system.

In any case the stream is never stopped.

Type: Versioned extended inline

Example:

{
 "lastModified": "2015-01-01T15:00:00.000Z",
 "modificationReason": "somestring",
 "services": [
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring"
 },
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring"
 }
],
 "streams": [
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring",
 "pipeline": {
 "lastModified": "2015-01-01T15:00:00.000Z",
 "modificationReason": "somestring",
 "processors": [
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring"
 },
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring"
 }
]
 }
 },
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring",
 "pipeline": {
 "lastModified": "2015-01-01T15:00:00.000Z",
 "modificationReason": "somestring",
 "processors": [
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring"
 },
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring"
 }
]
 }
 }
]
}

304

Nothing has been modified since the last call.

In this case the body content will be completely ignored
(hence the server can answer with an empty body to save network and resources).

404

Not found (the server probably does not handle this dataflow)

default

Unexpected error

POST /dataflows/{dataflowName}

Summary

Push the configuration of running dataflows.

Description

In order to ensure business continuity, Logisland will contact the third party application in order to push a snapshot of the current configuration.The endpoint will be called:
- On a regular basis (according to logisland configuration).
- Each time the a dataflow or a pipeline configuration change has been applied.

This service can be seen as well as a liveness ping.

Parameters

	delim

	

	header

	“Name”, “Located in”, “Required”, “Type”, “Format”, “Properties”, “Description”
:widths: 20, 15, 10, 10, 10, 20, 30

jobId | path | Yes | string | | | logisland job id (aka the engine name)
dataflowName | path | Yes | string | | | the dataflow name (aka the logisland job name)

Request

Body

A streaming pipeline.

Versioned extended inline

Inline schema:

	delim

	

	header

	“Name”, “Required”, “Type”, “Format”, “Properties”, “Description”
:widths: 20, 10, 15, 15, 30, 25

lastModified | Yes | string | date-time | | the last modified timestamp of this pipeline (used to trigger changes).
modificationReason | No | string | | | Can be used to document latest changeset.
services | No | array of Component | | | The service controllers.

streams | No | array of Component extended inline | | | The engine properties.

{
 "lastModified": "2015-01-01T15:00:00.000Z",
 "modificationReason": "somestring",
 "services": [
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring"
 },
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring"
 }
],
 "streams": [
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring",
 "pipeline": {
 "lastModified": "2015-01-01T15:00:00.000Z",
 "modificationReason": "somestring",
 "processors": [
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring"
 },
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring"
 }
]
 }
 },
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring",
 "pipeline": {
 "lastModified": "2015-01-01T15:00:00.000Z",
 "modificationReason": "somestring",
 "processors": [
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring"
 },
 {
 "component": "somestring",
 "config": [
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 },
 {
 "key": "somestring",
 "type": "string",
 "value": "somestring"
 }
],
 "documentation": "somestring",
 "name": "somestring"
 }
]
 }
 }
]
}

Responses

default

The server should return HTTP 200 OK.
By the way, the response is ignored by Logisland since the operation
has a fire and forget nature.

Data Structures

Component Model Structure

	delim

	

	header

	“Name”, “Required”, “Type”, “Format”, “Properties”, “Description”
:widths: 20, 10, 15, 15, 30, 25

component | Yes | string | | |
config | No | array of Property | | |

documentation | No | string | | |
name | Yes | string | | |

DataFlow Model Structure

A streaming pipeline.

Versioned extended inline

Inline schema:

	delim

	

	header

	“Name”, “Required”, “Type”, “Format”, “Properties”, “Description”
:widths: 20, 10, 15, 15, 30, 25

lastModified | Yes | string | date-time | | the last modified timestamp of this pipeline (used to trigger changes).
modificationReason | No | string | | | Can be used to document latest changeset.
services | No | array of Component | | | The service controllers.

streams | No | array of Component extended inline | | | The engine properties.

Pipeline Model Structure

Tracks stream processing pipeline configuration

Versioned extended inline

Inline schema:

	delim

	

	header

	“Name”, “Required”, “Type”, “Format”, “Properties”, “Description”
:widths: 20, 10, 15, 15, 30, 25

lastModified | Yes | string | date-time | | the last modified timestamp of this pipeline (used to trigger changes).
modificationReason | No | string | | | Can be used to document latest changeset.
processors | No | array of Component | | |

Processor Model Structure

A logisland ‘processor’.

Component

Property Model Structure

	delim

	

	header

	“Name”, “Required”, “Type”, “Format”, “Properties”, “Description”
:widths: 20, 10, 15, 15, 30, 25

key | Yes | string | | |
type | No | string | | {‘default’: ‘string’} |
value | Yes | string | | |

Service Model Structure

A logisland ‘controller service’.

Component

Stream Model Structure

Component extended inline

Inline schema:

	delim

	

	header

	“Name”, “Required”, “Type”, “Format”, “Properties”, “Description”
:widths: 20, 10, 15, 15, 30, 25

component | Yes | string | | |
config | No | array of Property | | |

documentation | No | string | | |
name | Yes | string | | |
pipeline | No | Versioned extended inline | | |

Versioned Model Structure

a versioned component

	delim

	

	header

	“Name”, “Required”, “Type”, “Format”, “Properties”, “Description”
:widths: 20, 10, 15, 15, 30, 25

lastModified | Yes | string | date-time | | the last modified timestamp of this pipeline (used to trigger changes).
modificationReason | No | string | | | Can be used to document latest changeset.

 What’s new in logisland ?

What’s new in logisland ?

v1.1.1

	add a clock service

	improve monitoring

	improve Cassandra support

v1.0.0

	add support for JMS kafka connect source

	add support for JDBC kafka connect source

	add Cassandra datastore service

	support all Kafka connect sinks

	add KafkaStreams engine

	update documentation

	fix test framework (runner)

	added vanilla java engine

v0.14.0

	add support for SOLR

	add support for Chronix timeseries

	review Datastore API

	fix matchquery update field policy issue

	remove elasticsearch 2.3 support

v0.10.0

	add kibana pcap panel cyber-security feature gui #187

	add support for elasticsearch 2.4 feature processor

	add support for elasticsearch 5 feature processor #214

	fix pb in kafkaStreamProcessingEngine (2.1) #244

	allow to set a default profile during build #271

	add ElasticSearch Service feature framework #241

	add multiGet elastic search processor feature processor #255

	fix Pcap telemetry processor issue #180 #224

	Make build work if no profile specified (use the highest hdp one) build #210

	implement Logisland agent #201

	fix travis build randomly fails on travis CI (spark-engine module tests) bug framework #159

	support maven profiles to handle dépendencies (hdp 2.4 & hdp 2.5) #116

	add a RESTful API for components live update agent feature framework #42

	add a logisland agent agent enhancement feature framework #117

	add a Topic metadata view feature gui #101

	add scheduler view feature framework gui #103

	add job configuration view feature gui #94

	add a global logisland.properties agent feature #71

	add a Topic metadata registry feature framework

	integrate BRO files & notification through a BroProcessor feature processor security #93

	add Support for SMTP/Mailer Processor feature processor security #138

	add a Release/deployment documentation #108

	Ensure source files have a licence header

	add HBase service to get and scan records

	add Multiget elasticsearch enricher processor

	add sessionization processor

	improve topic management in web ui gui #222

	Docker images shall be builded automatically framework #200

	fix classpath issue bug framework #247

	add Netflow telemetry Processor cyber-security feature processor #181

	add an “How to contribute page” documentation #183

	fix PutElasticsearch throws UnsupportedOperationException when duplicate document is found bug processor #221

	Feature/maven docker#200 enhancement framework #242

	Feature/partitioner enhancement framework #238

	add PCAP telemetry Processor cyber-security feature processor #180

	Move Mailer Processor into commons plugins build #196

	Origin/webanalytics framework processor web-analytics #236

	rename Plugins to Processors in online documentation documentation #173

v0.9.8

	add a retry parameter to PutElasticsearch bug enhancement processor #124

	add Timezone managmt to SplitText enhancement processor #126

	add IdempotentId processor enhancement feature processor #127

	migrate to Kafka 0.9 enhancement

v0.9.7

	add HDFS burner feature processor #89

	add ExtractJsonPath processor #90

	check compatibility with HDP 2.5 #112

	sometimes the drivers fails with status SUCCEEDED which prevents YARN to resubmit the job automatically #105

	logisland crashes when starting with wrong offsets #111

	add type checking for SplitText component enhancement #46

	add optional regex to SplitText #106

	add record schema management with ConvertFieldsType processor #75

	add field auto extractor processor : SplitTextWithProperties #49

	add a new RemoveFields processor

	add a NormalizeFields processor #88

	Add notion of asserting the asserted fields in MockRecord

v0.9.6

	add a Documentation generator for plugins feature #69

	add SQL aggregator plugin feature #74

	#66 merge elasticsearch-shaded and elasticsearch-plugin enhancement

	#73 add metric aggregator processor feature

	#57 add sampling processor enhancement

	#72 integrate OutlierDetection plugin feature

	#34 integrate QueryMatcherProcessor bug

v0.9.5

	generify API from Event to Records

	add docker container for demo

	add topic auto-creation parameters

	add Record validators

	add processor chaining that works globally on an input/output topic and pipe in-memory contexts into sub-processors

	better error handling for SplitText

	testRunner API

	migrate LogParser to LogProcessor Interface

	reporting metrics to know where are exactly the processors on the topics

	add an HDFSBurner Engine

	yarn stability improvements

	more spark parameters handling

	driver failover through Zookeper offset checkpointing

	add raw_content to event if regex matching failed in SplitText

	integration testing with embedded Kafka/Spark

	processor chaining

	

 Frequently Asked Questions.

Frequently Asked Questions.

I already use ELK, why would I need to use LogIsland ?

Well, at first one could say that that both stacks are overlapping,
but the real purpose of the LogIsland framework is the abstraction of scalability of log aggregation.

In fact if you already have an ELK stack you’ll likely want to make it scale (without pain) in both volume and features ways.
LogIsland will be used for this purpose as an EOM (Event Oriented Middleware) based on Kafka & Spark, where you can plug advanced features
with ease.

So you just have to route your logs from the Logstash (or Flume, or Collectd, …) agents to Kafka topics and launch parsers and processors.

Do I need Hadoop to play with LogIsland ?

No, if your goal is simply to aggregate a massive amount of logs in an Elasticsearch cluster,
and to define complex event processing rules to generate new events you definitely don’t need an Hadoop cluster.

Kafka topics can be used as an high throughput log buffer for sliding-windows event processing.
But if you need advanced batch analytics, it’s really easy to dump your logs into an hadoop cluster to build machine learning models.

How do I make it scale ?

LogIsland is made for scalability, it relies on Spark and Kafka which are both scalable by essence, to scale LogIsland just have to add more kafka brokers and more Spark slaves.
This is the manual way, but we’ve planned in further releases to provide auto-scaling either Docker Swarn support or Mesos Marathon.

What’s the difference between Apache NIFI and LogIsland ?

Apache NIFI is a powerful ETL very well suited to process incoming data such as logs file, process & enrich them and send them out to any datastore.
You can do that as well with LogIsland but LogIsland is an event oriented framework designed to process huge amount of events in a Complex Event Processing
manner not a Single Event Processing as NIFI does. LogIsland is not an ETL or a DataFlow, the main goal is to extract information from realtime data.

Anyway you can use Apache NIFI to process your logs and send them to Kafka in order to be processed by LogIsland

Error : realpath not found

If you don’t have the realpath command on you system you may need to install it:

brew install coreutils
sudo apt-get install coreutils

How to deploy LogIsland as a Single node Docker container

The easy way : you start a small Docker container with all you need inside (Elasticsearch, Kibana, Kafka, Spark, LogIsland + some usefull tools)

Docker [https://www.docker.com] is becoming an unavoidable tool to isolate a complex service component. It’s easy to manage, deploy and maintain. That’s why you can start right away to play with LogIsland through the Docker image provided from Docker HUB [https://hub.docker.com/r/hurence/logisland/]

Get the LogIsland image
docker pull hurence/logisland

Run the container
docker run \
 -it \
 -p 80:80 \
 -p 9200-9300:9200-9300 \
 -p 5601:5601 \
 -p 2181:2181 \
 -p 9092:9092 \
 -p 9000:9000 \
 -p 4050-4060:4050-4060 \
 --name logisland \
 -h sandbox \
 hurence/logisland:latest bash

Connect a shell to your LogIsland container
docker exec -ti logisland bash

How to deploy LogIsland in an Hadoop cluster ?

When it comes to scale, you’ll need a cluster. logisland is just a framework that facilitates running sparks jobs over Kafka topics so if you already have a cluster you just have to get the latest logisland binaries and unzip them to a edge node of your hadoop cluster.

For now Log-Island is fully compatible with HDP 2.4 but it should work well on any cluster running Kafka and Spark.
Get the latest release and build the package.

You can download the latest release build [https://github.com/Hurence/logisland/releases/download/v0.9.5/logisland-0.9.5-bin.tar.gz]

git clone git@github.com:Hurence/logisland.git
cd logisland-0.9.5
mvn clean install -DskipTests

This will produce a logisland-assembly/target/logisland-0.9.5-bin.tar.gz file that you can untar into any folder of your choice in a edge node of your cluster.

Please read this excellent article on spark long running job setup : http://mkuthan.github.io/blog/2016/09/30/spark-streaming-on-yarn/

How can I configure Kafka to avoid irrecoverable exceptions ?

If the message must be reliable published on Kafka cluster, Kafka producer and Kafka cluster needs to be configured with care. It needs to be done independently of chosen streaming framework.

Kafka producer buffers messages in memory before sending. When our memory buffer is exhausted, Kafka producer must either stop accepting new records (block) or throw errors. By default Kafka producer blocks and this behavior is legitimate for stream processing. The processing should be delayed if Kafka producer memory buffer is full and could not accept new messages. Ensure that block.on.buffer.full Kafka producer configuration property is set.

With default configuration, when Kafka broker (leader of the partition) receive the message, store the message in memory and immediately send acknowledgment to Kafka producer. To avoid data loss the message should be replicated to at least one replica (follower). Only when the follower acknowledges the leader, the leader acknowledges the producer.

This guarantee you will get with ack=all property in Kafka producer configuration. This guarantees that the record will not be lost as long as at least one in-sync replica remains alive.

But this is not enough. The minimum number of replicas in-sync must be defined. You should configure min.insync.replicas property for every topic. I recommend to configure at least 2 in-sync replicas (leader and one follower). If you have datacenter with two zones, I also recommend to keep leader in the first zone and 2 followers in the second zone. This configuration guarantees that every message will be stored in both zones.

We are almost done with Kafka cluster configuration. When you set min.insync.replicas=2 property, the topic should be replicated with factor 2 + N. Where N is the number of brokers which could fail, and Kafka producer will still be able to publish messages to the cluster. I recommend to configure replication factor 3 for the topic (or more).

With replication factor 3, the number of brokers in the cluster should be at least 3 + M. When one or more brokers are unavailable, you will get underreplicated partitions state of the topics. With more brokers in the cluster than replication factor, you can reassign underreplicated partitions and achieve fully replicated cluster again. I recommend to build the 4 nodes cluster at least for topics with replication factor 3.

The last important Kafka cluster configuration property is unclean.leader.election.enable. It should be disabled (by default it is enabled) to avoid unrecoverable exceptions from Kafka consumer. Consider the situation when the latest committed offset is N, but after leader failure, the latest offset on the new leader is M < N. M < N because the new leader was elected from the lagging follower (not in-sync replica). When the streaming engine ask for data from offset N using Kafka consumer, it will get an exception because the offset N does not exist yet. Someone will have to fix offsets manually.

So the minimal recommended Kafka setup for reliable message processing is:

4 nodes in the cluster
unclean.leader.election.enable=false in the brokers configuration
replication factor for the topics – 3
min.insync.replicas=2 property in topic configuration
ack=all property in the producer configuration
block.on.buffer.full=true property in the producer configuration

With the above setup your configuration should be resistant to single broker failure, and Kafka consumers will survive new leader election.

You could also take look at replica.lag.max.messages and replica.lag.time.max.ms properties for tuning when the follower is removed from ISR by the leader. But this is out of this blog post scope.

How to purge a Kafka queue ?

Temporarily update the retention time on the topic to one second:

kafka-topics.sh --zookeeper localhost:13003 --alter --topic MyTopic --config retention.ms=1000

then wait for the purge to take effect (about one minute). Once purged, restore the previous retention.ms value.

You can also try to delete the topic :

add one line to server.properties file under config folder:

delete.topic.enable=true

then, you can run this command:

bin/kafka-topics.sh --zookeeper localhost:2181 --delete --topic test

 Index

Index

 Welcome to the LogIsland documentation!

Welcome to the LogIsland documentation!

This readme will walk you through navigating and building the LogIsland documentation, which is included
here with the source code.

Read on to learn more about viewing documentation in plain text (i.e., markdown) or building the
documentation yourself. Why build it yourself? So that you have the docs that corresponds to
whichever version of LogIsland you currently have checked out of revision control.

Prerequisites

The LogIsland documentation build uses Sphinx
To get started you can run the following commands

sudo pip install -r requirements.txt

Generating the Documentation HTML

We include the LogIsland documentation as part of the source (as opposed to using a hosted wiki, such as
the github wiki, as the definitive documentation) to enable the documentation to evolve along with
the source code and be captured by revision control (currently git). This way the code automatically
includes the version of the documentation that is relevant regardless of which version or release
you have checked out or downloaded.

This documentation is built using [Sphinx](http://sphinx-doc.org). It also uses some extensions for theming and REST API
documentation support.

Start by installing the requirements:

sudo pip install -r requirements.txt

Then you can generate the HTML version of the docs:

make html

The root of the documentation will be at _build/html/index.html

While editing the documentation, you can get a live preview using python-livepreview. Install the Python library:

sudo pip install livereload

Then run the monitoring script in the background:

python autoreload.py &

If you install the [browser extensions](http://livereload.com/) then everything should update every time any files are
saved without any manual steps on your part.

If you want to install this extension. One way to do it is to install gem (on linux) with apt-get

sudo apt-get install gem

verify your version is >= 2.3, then make a new directory, create a “Gemfile” file in this directory, go in it

cd <directory_name>

refer to the https://github.com/guard/guard-livereload for content of Gemfile. But in my case I had to do that for
the command ‘bundle’ to work (I am not a ruby developer…).

apt install clang make ruby-dev libffi-dev

 Monitoring Guide

Monitoring Guide

This document summarizes information relevant to LogIsland monitoring.

Concepts & architecture

LogIsland monitoring is based on the couple prometheus/grafana. Prometheus is used to store all metrics coming from all monitored services by polling those services at a regular interval.

The setup is split into 2 parts, one is for metrics instrumentation (system, kafka, zookeeper, hbase) on each node of the cluster and the other is for the configuration of the docker monitoring components.

Metrics in prometheus

https://prometheus.io/

Prometheus fundamentally stores all data as time series: streams of timestamped values belonging to the same metric and the same set of labeled dimensions. Besides stored time series, Prometheus may generate temporary derived time series as the result of queries. Every time series is uniquely identified by its metric name and a set of key-value pairs, also known as labels.

The metric name specifies the general feature of a system that is measured (e.g. http_requests_total - the total number of HTTP requests received). It may contain ASCII letters and digits, as well as underscores and colons. It must match the regex [a-zA-Z_:][a-zA-Z0-9_:]*. Labels enable Prometheus’s dimensional data model: any given combination of labels for the same metric name identifies a particular dimensional instantiation of that metric (for example: all HTTP requests that used the method POST to the /api/tracks handler). The query language allows filtering and aggregation based on these dimensions. Changing any label value, including adding or removing a label, will create a new time series.

	https://prometheus.io/docs/querying/basics/

	https://prometheus.io/docs/querying/operators/

	https://prometheus.io/docs/querying/functions/

Dashboarding with Grafana

https://grafana.com/grafana

Grafana is an open source, feature rich metrics dashboard and graph editor for Graphite, Elasticsearch, OpenTSDB, Prometheus and InfluxDB. It is used to graph the prometheus metrics.

	http://docs.grafana.org/guides/getting_started/

	http://docs.grafana.org/guides/basic_concepts/

Step 1 : Cluster setup

The following commands should be launched on each node of your cluster handling LogIsland infrastructure services.

System metrics with Node Exporter

https://github.com/prometheus/node_exporter

On each hardware node which runs a LogIsland related service (Zookeeper, Kafka, HBase, Yarn) we want to grab system metrics. Prometheus was developed for the purpose of monitoring web services. In order to monitor the metrics of your linux server, you should install a tool called Node Exporter. Node Exporter, as its name suggests, exports lots of metrics (such as disk I/O statistics, CPU load, memory usage, network statistics, and more) in a format Prometheus understands.

Node exporter can be either installed manually or launched as a Docker container :

Manual mode :

download the latest build of Node Exporter
cd /opt
wget https://github.com/prometheus/node_exporter/releases/download/1.1.1/node_exporter-1.1.1.linux-amd64.tar.gz -O /tmp/node_exporter-1.1.1.linux-amd64.tar.gz
sudo tar -xvzf /tmp/node_exporter-1.1.1.linux-amd64.tar.gz

Create a soft link to the node_exporter binary in /usr/bin.
sudo ln -s /opt/node_exporter /usr/bin

Use nano or your favorite text editor to create an Upstart configuration file called node_exporter.conf.

sudo vim /etc/init/node_exporter.conf

This file should contain the link to the node_exporter executable, and also specify when the executable should be started. Accordingly, add the following code:

Run node_exporter
start on startup

script
 /usr/bin/node_exporter
end script

At this point, Node Exporter is available as a service which can be started using the service command:

sudo service node_exporter start

Docker mode :

Node exporter can also be launched as a docker container :

docker run -d -p 9100:9100 -v “/proc:/host/proc” -v “/sys:/host/sys” -v “/:/rootfs” –net=”host” prom/node-exporter -collector.procfs /host/proc -collector.sysfs /host/proc -collector.filesystem.ignored-mount-points “^/(sys|proc|dev|host|etc)($|/)”

Display the metrics :

After Node Exporter starts, use a browser to view its web interface available at http://your_server_ip:9100/metrics You should see a page with some metrics.

Zookeeper instrumentation

We will use the jmx_prometheus_javaagent tool to publish zookeeper metrics on a given port ($ZK_JMX_PORT here). Prometheus will then scrap the metrics here.

Install files

	
	First download the jmx_prometheus_javaagent-0.10.jar [https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.10/jmx_prometheus_javaagent-0.10.jar] jar file and copy it on every node of the cluster (for example in /opt/jmx/ folder) :

	wget https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.10/jmx_prometheus_javaagent-0.10.jar

	Then copy the file jmx_zookeeper.yml on every zookeeper node in the cluster (for example in /opt/jmx/ folder)

Set appropriate flags

Zookeeper must be launched with the following flags

-javaagent:/opt/jmx/jmx_prometheus_javaagent-0.10.jar=$ZK_JMX_PORT:/opt/jmx/jmx_zookeeper.yml -Dcom.sun.management.jmxremote

These flags can be set in two different ways :

	They can be added in the zookeeper file zkServer.sh using the following command (please make sure to backup the original zkServer.sh file before) :

sudo sed -i ‘s|-Dcom.sun.management.jmxremote |-javaagent:/opt/jmx/jmx_prometheus_javaagent-0.10.jar=$ZK_JMX_PORT:/opt/jmx/jmx_zookeeper.yml -Dcom.sun.management.jmxremote |g’ zkServer.sh

	If you are using Ambari, you can enrich the ZOOMAIN environment variable in “zookeeper-env template” section as below :

export ZOOMAIN=”-javaagent:/opt/jmx/jmx_prometheus_javaagent-0.10.jar=$ZK_JMX_PORT:/opt/jmx/jmx_zookeeper.yml ${ZOOMAIN}”

Restart services and check metrics

Restart zookeeper services.
The metrics should be available for each node and reached via <node_host_name_or_IP>:$ZK_JMX_PORT/metrics

Kafka instrumentation

We will use the jmx_prometheus_javaagent tool to publish kafka metrics on a given port ($KAFKA_JMX_PORT here). Prometheus will then scrap the metrics here.

Install files

	
	First download the jmx_prometheus_javaagent-0.10.jar [https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.10/jmx_prometheus_javaagent-0.10.jar] jar file and copy it on every node of the cluster if not already done in a previous step (for example in /opt/jmx/ folder) :

	wget https://repo1.maven.org/maven2/io/prometheus/jmx/jmx_prometheus_javaagent/0.10/jmx_prometheus_javaagent-0.10.jar

	Then copy the file jmx_kafka.yml on every kafka node in the cluster (for example in /opt/jmx/ folder)

Set appropriate flags

In Ambari, enrich the KAFKA_OPTS environment variable in “kafka-env template” section as below :

export KAFKA_OPTS=” -javaagent:/opt/jmx/jmx_prometheus_javaagent-0.10.jar=$KAFKA_JMX_PORT:/opt/jmx/jmx_kafka.yml “

Restart services and check metrics

Restart kafka services.
The metrics should be available for each node and reached via <node_host_name_or_IP>:$KAFKA_JMX_PORT/metrics

Spark instrumentation

Spark has a configurable metrics system based on the Dropwizard Metrics Library. This allows users to report Spark metrics to a variety of sinks including HTTP, JMX, and CSV files. The metrics system is configured via a configuration file that Spark expects to be present at $SPARK_HOME/conf/metrics.properties.
A custom file location can be specified via the spark.metrics.conf configuration property. By default, the root namespace used for driver or executor metrics is the value of spark.app.id. However, often times, users want to be able to track the metrics across apps for driver and executors, which is hard to do with application ID (i.e. spark.app.id) since it changes with every invocation of the app. For such use cases, a custom namespace can be specified for metrics reporting using spark.metrics.namespace configuration property.
If, say, users wanted to set the metrics namespace to the name of the application, they can set the spark.metrics.namespace property to a value like ${spark.app.name}. This value is then expanded appropriately by Spark and is used as the root namespace of the metrics system. Non driver and executor metrics are never prefixed with spark.app.id, nor does the spark.metrics.namespace property have any such affect on such metrics.

Spark’s metrics are decoupled into different instances corresponding to Spark components. Within each instance, you can configure a set of sinks to which metrics are reported. The following instances are currently supported:

	master: The Spark standalone master process.

	applications: A component within the master which reports on various applications.

	worker: A Spark standalone worker process.

	executor: A Spark executor.

	driver: The Spark driver process (the process in which your SparkContext is created).

	shuffleService: The Spark shuffle service.

	logisland: all the LogIsland processing

ENABLE SPARK METRICS REPORT TO JMX

Spark has a configurable metrics system. By default, it doesn’t expose its metrics, but only through the web UI, as mentioned above. To enable exposing metrics as JMX MBeans, you should edit $SPARK_HOME/conf/metrics.properties file.

Add (or uncomment) the row:

metrics.properties

*.sink.jmx.class=org.apache.spark.metrics.sink.JmxSink

*.sink.jmx.class=org.apache.spark.metrics.sink.JmxSink
master.source.jvm.class=org.apache.spark.metrics.source.JvmSource
worker.source.jvm.class=org.apache.spark.metrics.source.JvmSource
driver.source.jvm.class=org.apache.spark.metrics.source.JvmSource
executor.source.jvm.class=org.apache.spark.metrics.source.JvmSource

Step 2: Monitoring console setup

The second part deals with the monitoring tools in the docker compose. Theses software shall be installed in an autonomous VM or linux host, able to access the cluster nodes like a edge node.

All the binaries can be found in th $LOGISLAND_HOME/monitoring folder. So get the latest release, extract it on your edge node and install Docker & docker-compose [https://docs.docker.com/compose/install/] on the edge node (the one that will run the docker compose monitoring stack : prometheus/grafana) as well.

Services ports list

Here is a list of arbitrary ports for prometheus data scrapping.
there are many web services by host so that can a good idea to carefully note every port number for each of them and to keep the same ports on each host.

	prometheus : 9090

	grafana : 3000

	elasticsearch-exporter : 9108

	burrow : 7074

	burrow-exporter : 7075

	kafka-broker : 7071

	zookeeper : 7073

	node-exporter : 9100

Elasticsearch exporter

https://github.com/justwatchcom/elasticsearch_exporter

this tool is used to get metrics from elasticsearch nodes through the REST api and to serve them in the prometheus format

make sure to edit the $LOGISLAND_HOME/monitoring/.env file with the correct ES_HOST and ES_PORT values.

Burrow

Burrow is a monitoring companion for Apache Kafka that provides consumer lag checking as a service without the need for specifying thresholds. It monitors committed offsets for all consumers and calculates the status of those consumers on demand. An HTTP endpoint is provided to request status on demand, as well as provide other Kafka cluster information. There are also configurable notifiers that can send status out via email or HTTP calls to another service.

https://github.com/linkedin/Burrow

additionnal configuration can be set in $LOGISLAND_HOME/monitoring/burrow/conf/burrow.cfg but you can leave the default

Configure Prometheus

edit $LOGISLAND_HOME/monitoring/prometheus/conf/prometheus.yml with the following (according to the previous port number list)

global:
 scrape_interval: 10s
 evaluation_interval: 10s
scrape_configs:
 - job_name: 'kafka'
 static_configs:
 - targets:
 - KAFKA_BROKER1:7071
 - KAFKA_BROKER2:7071
 - job_name: 'elasticsearch'
 static_configs:
 - targets:
 - ELASTICSEARCH_EXPORTER:9108
 - job_name: 'zookeeper'
 static_configs:
 - targets:
 - ZK_NODE1:7072
 - ZK_NODE2:7072
 - ZK_NODE3:7072
 - job_name: 'burrow'
 static_configs:
 - targets:
 - BURROW:7075
 - job_name: 'logisland'
 static_configs:
 - targets:
 - LOGISLAND_APP1:7076
 - job_name: 'system'
 static_configs:
 - targets:
 - LOGISLAND_APP1:9100

Launch Docker console

Start Docker-compose

Launch all the tools tools (prometheus, burrow, es-exporter, grafana) are packaged into a docker composite bundle.

cd $LOGISLAND_HOME/monitoring
docker-compose up -d

Display the metrics in Prometheus

Once all the containers have started, use a browser to view metrics displayed in Prometheus web interface http://prometheus_host:9090/graph .

Grafana

Run Grafana as a Docker container

Grafana can be run as a Docker container (admin password needs to be chosen):

docker run -d -p 3000:3000 -e “GF_SECURITY_ADMIN_PASSWORD=admin_password” -v ~/grafana_db:/var/lib/grafana grafana/grafana

Add Prometheus Datasource

Go to the Grafana login page [http://grafana_host:3000/?orgId=1] to login with admin/admin_password (feel free to change that).

	Click on add data source named logisland_prometheus of type Prometheus with url http://localhost:9090 and direct access.

	Go to “Dashboards > Import” and import all the json dashboards you’ll find under $LOGISLAND_HOME/monitoring/grafana

Metrics and alerts

Elasticsearch alerts

 How to extend LogIsland ?

How to extend LogIsland ?

In this new tutorial we will learn how to create a custom log parser and how to run it inside logisland Docker container

Maven setup

Create a folder for your super-plugin project :

mkdir -p super-plugin/lib
mkdir -p src/main/java/com/hurence/logisland

First you need to build logisland and to get the pom and jars availables for your projet

git clone https://github.com/Hurence/logisland.git
cd logisland

logisland jar dependencies are released on maven central :

<!-- https://mvnrepository.com/artifact/com.hurence.logisland/logisland-api -->
<dependency>
 <groupId>com.hurence.logisland</groupId>
 <artifactId>logisland-api</artifactId>
 <version>0.9.5</version>
</dependency>

├── pom.xml
├── src
│ ├── main
│ │ ├── java
│ │ │ └── com
│ │ │ └── hurence
│ │ │ └── logisland
│ │ │ └── MyLogParser.java
│ │ └── resources
│ └── test
│ └── java

Edit your pom.xml as follows

Write a custom log parser
—

Write your a custom LogParser for your super-plugin in /src/main/java/com/hurence/logisland/MyLogParser.java

Our parser will analyze some Proxy Log String in the following form :

“Thu Jan 02 08:43:39 CET 2014 GET 10.118.32.164 193.251.214.117 http webmail.laposte.net 80 /webmail/fr_FR/Images/Images-2013091.1.126/Images/RightJauge.gif 724 409 false false”

package com.hurence.logisland;

import com.hurence.logisland.event.Event;
import com.hurence.logisland.log.LogParser;
import com.hurence.logisland.log.LogParserException;

import java.text.SimpleDateFormat;

/**
 * NetworkFlow(
 * timestamp: Long,
 * method: String,
 * ipSource: String,
 * ipTarget: String,
 * urlScheme: String,
 * urlHost: String,
 * urlPort: String,
 * urlPath: String,
 * requestSize: Int,
 * responseSize: Int,
 * isOutsideOfficeHours: Boolean,
 * isHostBlacklisted: Boolean,
 * tags: String)
 */
public class ProxyLogParser implements LogParser {

 /**
 * take a line of csv and convert it to a NetworkFlow
 *
 * @param s
 * @return
 */
 public Event[] parse(String s) throws LogParserException {

 Event event = new Event();

 try {
 String[] records = s.split("\t");

 try {
 SimpleDateFormat sdf = new SimpleDateFormat("EEE MMM dd HH:mm:ss z yyyy");
 event.put("timestamp", "long", sdf.parse(records[0]).getTime());
 } catch (Exception e) {
 event.put("parsing_error", e.getMessage());
 }

 event.put("method", "string", records[1]);
 event.put("ipSource", "string", records[2]);
 event.put("ipTarget", "string", records[3]);
 event.put("urlScheme", "string", records[4]);
 event.put("urlHost", "string", records[5]);
 event.put("urlPort", "string", records[6]);
 event.put("urlPath", "string", records[7]);

 try {
 event.put("requestSize", "int", Integer.parseInt(records[8]));
 } catch (Exception e) {
 event.put("parsing_error", e.getMessage());
 }
 try {
 event.put("responseSize", "int", Integer.parseInt(records[9]));
 } catch (Exception e) {
 event.put("parsing_error", e.getMessage());
 }
 try {
 event.put("isOutsideOfficeHours", "bool", Boolean.parseBoolean(records[10]));
 } catch (Exception e) {
 event.put("parsing_error", e.getMessage());
 }
 try {
 event.put("isHostBlacklisted", "bool", Boolean.parseBoolean(records[11]));
 } catch (Exception e) {
 event.put("parsing_error", e.getMessage());
 }

 if (records.length == 13) {
 String tags = records[12].replaceAll("\"", "").replaceAll("\\[", "").replaceAll("\\]", "");
 event.put("tags", "string", tags);
 }

 }catch (Exception e) {
 event.put("parsing_error", e.getMessage());
 }

 Event[] result = new Event[1];
 result[0] = event;

 return result;
 }

}

Test your parser with JUnit

which can be tested (not really deeply …) with a small unit test

Deploy the custom component to Docker container

Now you have a fully functionnal plugin and you can build it with maven by running

mvn package

It’s time to deploy our splendid little plugin to logisland. We’ll get the Docker image, run this container by mounting a host directory into the container to share the brand new jar we have built.

docker pull hurence/logisland:latest
docker run \
 -it \
 -p 80:80 \
 -p 9200-9300:9200-9300 \
 -p 5601:5601 \
 -p 2181:2181 \
 -p 9092:9092 \
 -p 9000:9000 \
 -p 4050-4060:4050-4060 \
 --name logisland \
 -h sandbox \
 -v $HOME/Documents/workspace/hurence/projects/super-plugin/:/usr/local/logisland/super-plugin \
 hurence/logisland:latest bash

cd $LOGISLAND_HOME
cp super-plugin/target/super-plugin-1.0-SNAPSHOT.jar lib/

Start a log parser

A Log parser takes a log line as a String and computes an Event as a sequence of fields.
Let’s start a LogParser streaming job with a custom ApacheLogParser.
This stream will process log entries as soon as they will be queued into li-apache-logs Kafka topics, each log will
be parsed as an event which will be pushed back to Kafka in the li-apache-event topic.

$LOGISLAND_HOME/bin/log-parser \
 --kafka-brokers sandbox:9092 \
 --input-topics li-proxy-logs \
 --output-topics li-proxy-events \
 --max-rate-per-partition 10000 \
 --log-parser com.hurence.logisland.ProxyLogParser

As in the [getting started guide]({{ site.baseurl }}/getting-started) you can use kafkacat tool to inject the following [proxy log file]({{ site.baseurl }}/public/proxy.log)

cat proxy.log | kafkacat -P -b sandbox -t li-proxy-logs

In another Docker shell, you should see that some events are going into Kafka (even if they’re serialized in Kryo and you can’t understand anything)

/usr/local/kafka/bin/kafka-console-consumer.sh –from-beginning –topic li-proxy-event –zookeeper sandbox:2181

Rebuild your jar, redeploy it to logisland/lib dir and launch a mapper job in the Docker container :

Each event will be sent to Elasticsearch by bulk.

$LOGISLAND_HOME/bin/event-indexer \
 --kafka-brokers sandbox:9092 \
 --es-host sandbox \
 --index-name li-apache \
 --input-topics li-apache-event \
 --max-rate-per-partition 10000 \
 --event-mapper com.hurence.logisland.plugin.apache.ProxyEventMapper

Open up your browser and go to http://sandbox:5601/. Enjoy !

checkout the code of this tutorial here https://github.com/Hurence/logisland-plugin-template.git

 Releasing guide

Releasing guide

This guide will help you to perform the full release process for Logisland framework.

git hf release start v1.1.1

update the version (you should run a dry run first)
./update-version.sh -o 0.14.0 -n 1.1.1 -d
./update-version.sh -o 0.14.0 -n 1.1.1

Build the code and run the tests

The following commands must be run from the top-level directory.

mvn clean install -pFull

If you wish to skip the unit tests you can do this by adding -DskipTests to the command line.

Release to maven repositories

to release artifacts (if you’re allowed to), follow this guide release to OSS Sonatype with maven [http://central.sonatype.org/pages/apache-maven.html]

mvn license:format
mvn -DperformRelease=true clean deploy -Pfull
mvn versions:commit

follow the staging procedure in oss.sonatype.org [https://oss.sonatype.org/#stagingRepositories] or read Sonatype book [http://books.sonatype.com/nexus-book/reference/staging-deployment.html#staging-maven]

go to oss.sonatype.org [https://oss.sonatype.org/#stagingRepositories] to release manually the artifact

Publish release assets to github

please refer to https://developer.github.com/v3/repos/releases

curl -XPOST https://uploads.github.com/repos/Hurence/logisland/releases/v1.1.1/assets?name=logisland-1.1.1-bin-hdp2.5.tar.gz -v –data-binary @logisland-assembly/target/logisland-0.10.3-bin-hdp2.5.tar.gz –user oalam -H ‘Content-Type: application/gzip’

Publish Docker image

Building the image

build logisland
mvn clean install -DskipTests -Pdocker -Dhdp2.5

verify image build
docker images

then login and push the latest image

docker login
docker push hurence/logisland

Publish artifact to github

Tag the release + upload latest tgz

 User experience & Workflow

User experience & Workflow

 Event aggregation

Event aggregation

In the following tutorial we’ll learn how to generate time window metrics on some http traffic (apache log records) and
how to raise custom alerts based on lucene matching query criterion.

We assume that you already know how to parse and ingest Apache logs into logisland.
If it’s not the case please refer to the previous Apache logs indexing tutorial.
We will first add an SQLAggregator Stream
to compute some metrics and then add a MatchQuery Processor.

TODOOOOOOOOOOOOOOOOOOOOOOO

2. Logisland job setup

The logisland job for this tutorial is already packaged in the tar.gz assembly and you can find it here :

docker exec -i -t logisland vim conf/aggregate-events.yml

We will start by explaining each part of the config file.

We make a special use of the KafkaRecordStreamSQLAggregator here.
Using his sql possibilities.
This stream defines input/output topics names as well as Serializers and avro schema.

Note

The Avro [http://avro.apache.org/docs/1.7.7/spec.html] schema is set for the input topic and must be same as the avro schema of the output topic for the stream that
produces the records (please refer to Index Apache logs tutorial

The most important part of the KafkaRecordStreamSQLAggregator is its sql.query property which defines
a query to apply on the incoming records for the given time window.

The following SQL query will be applied on sliding window of 10” of records.

SELECT count(*) AS connections_count, avg(bytes_out) AS avg_bytes_out, src_ip, first(record_time) as record_time
FROM logisland_events
GROUP BY src_ip
ORDER BY connections_count DESC
LIMIT 20

which will consider logisland_events topic as SQL table and create 20 output Record with the fields avg_bytes_out, src_ip & record_time.
the statement with record_time will ensure that the created Records will correspond to the effective input event time (not the actual time).

- stream: metrics_by_host
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamSQLAggregator
 type: stream
 documentation: a processor that links
 configuration:
 kafka.input.topics: logisland_events
 kafka.output.topics: logisland_aggregations
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 window.duration: 10
 avro.input.schema: >
 { "version":1,
 "type": "record",
 "name": "com.hurence.logisland.record.apache_log",
 "fields": [
 { "name": "record_errors", "type": [{"type": "array", "items": "string"},"null"] },
 { "name": "record_raw_key", "type": ["string","null"] },
 { "name": "record_raw_value", "type": ["string","null"] },
 { "name": "record_id", "type": ["string"] },
 { "name": "record_time", "type": ["long"] },
 { "name": "record_type", "type": ["string"] },
 { "name": "src_ip", "type": ["string","null"] },
 { "name": "http_method", "type": ["string","null"] },
 { "name": "bytes_out", "type": ["long","null"] },
 { "name": "http_query", "type": ["string","null"] },
 { "name": "http_version","type": ["string","null"] },
 { "name": "http_status", "type": ["string","null"] },
 { "name": "identd", "type": ["string","null"] },
 { "name": "user", "type": ["string","null"] }]}
 sql.query: >
 SELECT count(*) AS connections_count, avg(bytes_out) AS avg_bytes_out, src_ip
 FROM logisland_events
 GROUP BY src_ip
 ORDER BY event_count DESC
 LIMIT 20
 max.results.count: 1000
 output.record.type: top_client_metrics

Here we will compute every x seconds, the top twenty src_ip for connections count.
The result of the query will be pushed into to logisland_aggregations topic as new top_client_metrics Record containing connections_count and avg_bytes_out fields.

the third match some criteria to send some alerts

- processor: match_query
 component: com.hurence.logisland.processor.MatchQuery
 type: processor
 documentation: a parser that produce alerts from lucene queries
 configuration:
 numeric.fields: bytes_out,connections_count
 too_much_bandwidth: avg_bytes_out:[25000 TO 5000000]
 too_many_connections: connections_count:[150 TO 300]
 output.record.type: threshold_alert

3. Launch the script

For this tutorial we will handle some apache logs with a splitText parser and send them to Elastiscearch
Connect a shell to your logisland container to launch the following streaming jobs.

docker exec -i -t logisland bin/logisland.sh --conf conf/aggregate-events.yml

4. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic
but there’s a super useful tool in the Kafka ecosystem : kafkacat [https://github.com/edenhill/kafkacat],
a generic command line non-JVM Apache Kafka producer and consumer which can be easily installed.

If you don’t have your own httpd logs available, you can use some freely available log files from
NASA-HTTP [http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html] web site access:

	Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz]

	Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz]

Let’s send the first 500000 lines of NASA http access over July 1995 to LogIsland with kafkacat to logisland_raw Kafka topic

cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -500000 NASA_access_log_Jul95 | kafkacat -b sandbox:9092 -t logisland_raw

5. Check your alerts with Kibana

As we explore data logs from july 1995 we’ll have to select an absolute time filter from 1995-06-30 to 1995-07-08 to see the events.

[image: ../../_images/kibana-logisland-aggregates-events.png]
you can filter your events with record_type:connection_alert to get 71733 connections alerts matching your query

[image: ../../_images/kibana-blacklisted-host.png]
if we filter now on threshold alerts whith record_type:threshold_alert you’ll get the 13 src_ip that have been catched by the threshold query.

[image: ../../_images/kibana-threshold-alerts.png]

 Tutorials

Tutorials

Chat with us on Gitter

[image: Gitter]
 [https://gitter.im/logisland/logisland?utm_source=share-link&utm_medium=link&utm_campaign=share-link]Download the latest release build [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

Contents:

	Event aggregation
	2. Logisland job setup

	3. Launch the script

	4. Inject some Apache logs into the system

	5. Check your alerts with Kibana

 Tutorials

Tutorials

Chat with us on Gitter

[image: Gitter]
 [https://gitter.im/logisland/logisland?utm_source=share-link&utm_medium=link&utm_campaign=share-link]Download the latest release build [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

Contents:

 Tutorials

Tutorials

Chat with us on Gitter

[image: Gitter]
 [https://gitter.im/logisland/logisland?utm_source=share-link&utm_medium=link&utm_campaign=share-link]Download the latest release build [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

Contents:

 Tutorials

Tutorials

Chat with us on Gitter

[image: Gitter]
 [https://gitter.im/logisland/logisland?utm_source=share-link&utm_medium=link&utm_campaign=share-link]Download the latest release build [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

Contents:

 Tutorials

Tutorials

Chat with us on Gitter

[image: Gitter]
 [https://gitter.im/logisland/logisland?utm_source=share-link&utm_medium=link&utm_campaign=share-link]Download the latest release build [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

Contents:

 <no title>

 Indexes the content of a Record in Elasticsearch using elasticsearch’s bulk processor.

 <no title>

 The ConsolidateSession processor is the Logisland entry point to get and process events from the Web Analytics.As an example here is an incoming event from the Web Analytics:

“fields”: [{ “name”: “timestamp”, “type”: “long” },{ “name”: “remoteHost”, “type”: “string”},{ “name”: “record_type”, “type”: [“null”, “string”], “default”: null },{ “name”: “record_id”, “type”: [“null”, “string”], “default”: null },{ “name”: “location”, “type”: [“null”, “string”], “default”: null },{ “name”: “hitType”, “type”: [“null”, “string”], “default”: null },{ “name”: “eventCategory”, “type”: [“null”, “string”], “default”: null },{ “name”: “eventAction”, “type”: [“null”, “string”], “default”: null },{ “name”: “eventLabel”, “type”: [“null”, “string”], “default”: null },{ “name”: “localPath”, “type”: [“null”, “string”], “default”: null },{ “name”: “q”, “type”: [“null”, “string”], “default”: null },{ “name”: “n”, “type”: [“null”, “int”], “default”: null },{ “name”: “referer”, “type”: [“null”, “string”], “default”: null },{ “name”: “viewportPixelWidth”, “type”: [“null”, “int”], “default”: null },{ “name”: “viewportPixelHeight”, “type”: [“null”, “int”], “default”: null },{ “name”: “screenPixelWidth”, “type”: [“null”, “int”], “default”: null },{ “name”: “screenPixelHeight”, “type”: [“null”, “int”], “default”: null },{ “name”: “partyId”, “type”: [“null”, “string”], “default”: null },{ “name”: “sessionId”, “type”: [“null”, “string”], “default”: null },{ “name”: “pageViewId”, “type”: [“null”, “string”], “default”: null },{ “name”: “is_newSession”, “type”: [“null”, “boolean”],”default”: null },{ “name”: “userAgentString”, “type”: [“null”, “string”], “default”: null },{ “name”: “pageType”, “type”: [“null”, “string”], “default”: null },{ “name”: “UserId”, “type”: [“null”, “string”], “default”: null },{ “name”: “B2Bunit”, “type”: [“null”, “string”], “default”: null },{ “name”: “pointOfService”, “type”: [“null”, “string”], “default”: null },{ “name”: “companyID”, “type”: [“null”, “string”], “default”: null },{ “name”: “GroupCode”, “type”: [“null”, “string”], “default”: null },{ “name”: “userRoles”, “type”: [“null”, “string”], “default”: null },{ “name”: “is_PunchOut”, “type”: [“null”, “string”], “default”: null }]The ConsolidateSession processor groups the records by sessions and compute the duration between now and the last received event. If the distance from the last event is beyond a given threshold (by default 30mn), then the session is considered closed.The ConsolidateSession is building an aggregated session object for each active session.This aggregated object includes: - The actual session duration. - A boolean representing wether the session is considered active or closed. Note: it is possible to ressurect a session if for instance an event arrives after a session has been marked closed. - User related infos: userId, B2Bunit code, groupCode, userRoles, companyId - First visited page: URL - Last visited page: URL The properties to configure the processor are: - sessionid.field: Property name containing the session identifier (default: sessionId). - timestamp.field: Property name containing the timestamp of the event (default: timestamp). - session.timeout: Timeframe of inactivity (in seconds) after which a session is considered closed (default: 30mn). - visitedpage.field: Property name containing the page visited by the customer (default: location). - fields.to.return: List of fields to return in the aggregated object. (default: N/A)

 <no title>

 Outlier Analysis: A Hybrid Approach

In order to function at scale, a two-phase approach is taken

For every data point

	Detect outlier candidates using a robust estimator of variability (e.g. median absolute deviation) that uses distributional sketching (e.g. Q-trees)

	Gather a biased sample (biased by recency)

	Extremely deterministic in space and cheap in computation

For every outlier candidate

	Use traditional, more computationally complex approaches to outlier analysis (e.g. Robust PCA) on the biased sample

	Expensive computationally, but run infrequently

This becomes a data filter which can be attached to a timeseries data stream within a distributed computational framework (i.e. Storm, Spark, Flink, NiFi) to detect outliers.

 <no title>

 Enrich input records with content indexed in elasticsearch using multiget queries.
Each incoming record must be possibly enriched with information stored in elasticsearch.
Each outcoming record holds at least the input record plus potentially one or more fields coming from of one elasticsearch document.

 <no title>

 Evaluates one or more XPaths against the content of a record. The results of those XPaths are assigned to new attributes in the records, depending on configuration of the Processor. XPaths are entered by adding user-defined properties; the name of the property maps to the Attribute Name into which the result will be placed. The value of the property must be a valid XPath expression. If the expression matches nothing, no attributes is added.

 <no title>

 Consumes a Microsoft Excel document and converts each worksheet’s line to a structured record. The processor is assuming to receive raw excel file as input record.

 <no title>

 Fetches a row from an HBase table. The Destination property controls whether the cells are added as flow file attributes, or the row is written to the flow file content as JSON. This processor may be used to fetch a fixed row on a interval by specifying the table and row id directly in the processor, or it may be used to dynamically fetch rows by referencing the table and row id from incoming flow files.

 <no title>

	This processor creates and updates web-sessions based on incoming web-events. Note that both web-sessions and web-events are stored in elasticsearch.

	Firstly, web-events are grouped by their session identifier and processed in chronological order.
Then each web-session associated to each group is retrieved from elasticsearch.
In case none exists yet then a new web session is created based on the first web event.
The following fields of the newly created web session are set based on the associated web event: session identifier, first timestamp, first visited page. Secondly, once created, or retrieved, the web session is updated by the remaining web-events.
Updates have impacts on fields of the web session such as event counter, last visited page, session duration, …
Before updates are actually applied, checks are performed to detect rules that would trigger the creation of a new session:

the duration between the web session and the web event must not exceed the specified time-out,
the web session and the web event must have timestamps within the same day (at midnight a new web session is created),
source of traffic (campaign, …) must be the same on the web session and the web event.

When a breaking rule is detected, a new web session is created with a new session identifier where as remaining web-events still have the original session identifier. The new session identifier is the original session suffixed with the character ‘#’ followed with an incremented counter. This new session identifier is also set on the remaining web-events.
Finally when all web events were applied, all web events -potentially modified with a new session identifier- are save in elasticsearch. And web sessions are passed to the next processor.

WebSession information are:
- first and last visited page
- first and last timestamp of processed event
- total number of processed events
- the userId
- a boolean denoting if the web-session is still active or not
- an integer denoting the duration of the web-sessions
- optional fields that may be retrieved from the processed events

 <no title>

 Translates an IP address into a FQDN (Fully Qualified Domain Name). An input field from the record has the IP as value. An new field is created and its value is the FQDN matching the IP address. The resolution mechanism is based on the underlying operating system. The resolution request may take some time, specially if the IP address cannot be translated into a FQDN. For these reasons this processor relies on the logisland cache service so that once a resolution occurs or not, the result is put into the cache. That way, the real request for the same IP is not re-triggered during a certain period of time, until the cache entry expires. This timeout is configurable but by default a request for the same IP is not triggered before 24 hours to let the time to the underlying DNS system to be potentially updated.

 <no title>

 Looks up geolocation information for an IP address. The attribute that contains the IP address to lookup must be provided in the ip.address.field property. By default, the geo information are put in a hierarchical structure. That is, if the name of the IP field is ‘X’, then the the geo attributes added by enrichment are added under a father field named X_geo. “_geo” is the default hierarchical suffix that may be changed with the geo.hierarchical.suffix property. If one wants to put the geo fields at the same level as the IP field, then the geo.hierarchical property should be set to false and then the geo attributes are created at the same level as him with the naming pattern X_geo_<geo_field>. “_geo_” is the default flat suffix but this may be changed with the geo.flat.suffix property. The IpToGeo processor requires a reference to an Ip to Geo service. This must be defined in the iptogeo.service property. The added geo fields are dependant on the underlying Ip to Geo service. The geo.fields property must contain the list of geo fields that should be created if data is available for the IP to resolve. This property defaults to “*” which means to add every available fields. If one only wants a subset of the fields, one must define a comma separated list of fields as a value for the geo.fields property. The list of the available geo fields is in the description of the geo.fields property.

 <no title>

 IP address Query matching (using `Luwak <http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/>)`_

You can use this processor to handle custom events matching IP address (CIDR)
The record sent from a matching an IP address record is tagged appropriately.

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide [https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description] for supported operations

Warning

don’t forget to set numeric fields property to handle correctly numeric ranges queries

 <no title>

 Query matching based on Luwak [http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/]

you can use this processor to handle custom events defined by lucene queries
a new record is added to output each time a registered query is matched

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide [https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description] for supported operations

Warning

don’t forget to set numeric fields property to handle correctly numeric ranges queries.

 <no title>

 Retrieves a content indexed in elasticsearch using elasticsearch multiget queries.
Each incoming record contains information regarding the elasticsearch multiget query that will be performed. This information is stored in record fields whose names are configured in the plugin properties (see below) :

	index (String) : name of the elasticsearch index on which the multiget query will be performed. This field is mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.

	type (String) : name of the elasticsearch type on which the multiget query will be performed. This field is not mandatory.

	ids (String) : comma separated list of document ids to fetch. This field is mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.

	includes (String) : comma separated list of patterns to filter in (include) fields to retrieve. Supports wildcards. This field is not mandatory.

	excludes (String) : comma separated list of patterns to filter out (exclude) fields to retrieve. Supports wildcards. This field is not mandatory.

Each outcoming record holds data of one elasticsearch retrieved document. This data is stored in these fields :

	index (same field name as the incoming record) : name of the elasticsearch index.

	type (same field name as the incoming record) : name of the elasticsearch type.

	id (same field name as the incoming record) : retrieved document id.

	a list of String fields containing :

	field name : the retrieved field name

	field value : the retrieved field value

 <no title>

 The ParseBroEvent processor is the Logisland entry point to get and process Bro [https://www.bro.org] events. The Bro-Kafka plugin [https://github.com/bro/bro-plugins/tree/master/kafka] should be used and configured in order to have Bro events sent to Kafka. See the Bro/Logisland tutorial [http://logisland.readthedocs.io/en/latest/tutorials/indexing-bro-events.html] for an example of usage for this processor. The ParseBroEvent processor does some minor pre-processing on incoming Bro events from the Bro-Kafka plugin to adapt them to Logisland.

Basically the events coming from the Bro-Kafka plugin are JSON documents with a first level field indicating the type of the event. The ParseBroEvent processor takes the incoming JSON document, sets the event type in a record_type field and sets the original sub-fields of the JSON event as first level fields in the record. Also any dot in a field name is transformed into an underscore. Thus, for instance, the field id.orig_h becomes id_orig_h. The next processors in the stream can then process the Bro events generated by this ParseBroEvent processor.

As an example here is an incoming event from Bro:

{

“conn”: {

“id.resp_p”: 9092,

“resp_pkts”: 0,

“resp_ip_bytes”: 0,

“local_orig”: true,

“orig_ip_bytes”: 0,

“orig_pkts”: 0,

“missed_bytes”: 0,

“history”: “Cc”,

“tunnel_parents”: [],

“id.orig_p”: 56762,

“local_resp”: true,

“uid”: “Ct3Ms01I3Yc6pmMZx7”,

“conn_state”: “OTH”,

“id.orig_h”: “172.17.0.2”,

“proto”: “tcp”,

“id.resp_h”: “172.17.0.3”,

“ts”: 1487596886.953917

}

}

It gets processed and transformed into the following Logisland record by the ParseBroEvent processor:

“@timestamp”: “2017-02-20T13:36:32Z”

“record_id”: “6361f80a-c5c9-4a16-9045-4bb51736333d”

“record_time”: 1487597792782

“record_type”: “conn”

“id_resp_p”: 9092

“resp_pkts”: 0

“resp_ip_bytes”: 0

“local_orig”: true

“orig_ip_bytes”: 0

“orig_pkts”: 0

“missed_bytes”: 0

“history”: “Cc”

“tunnel_parents”: []

“id_orig_p”: 56762

“local_resp”: true

“uid”: “Ct3Ms01I3Yc6pmMZx7”

“conn_state”: “OTH”

“id_orig_h”: “172.17.0.2”

“proto”: “tcp”

“id_resp_h”: “172.17.0.3”

“ts”: 1487596886.953917

 <no title>

 The Gitlab logs processor is the Logisland entry point to get and process Gitlab [https://www.gitlab.com] logs. This allows for instance to monitor activities in your Gitlab server. The expected input of this processor are records from the production_json.log log file of Gitlab which contains JSON records. You can for instance use the kafkacat [https://github.com/edenhill/kafkacat] command to inject those logs into kafka and thus Logisland.

 <no title>

 The Netflow V5 [http://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/netflow/nfwhite.html] processor is the Logisland entry point to process Netflow (V5) events. NetFlow is a feature introduced on Cisco routers that provides the ability to collect IP network traffic.We can distinguish 2 components:

	Flow exporter: aggregates packets into flows and exports flow records (binary format) towards one or more flow collectors

	Flow collector: responsible for reception, storage and pre-processing of flow data received from a flow exporter

The collected data are then available for analysis purpose (intrusion detection, traffic analysis…)
Netflow are sent to kafka in order to be processed by logisland.
In the tutorial we will simulate Netflow traffic using nfgen [https://github.com/pazdera/NetFlow-Exporter-Simulator]. this traffic will be sent to port 2055. The we rely on nifi to listen of that port for incoming netflow (V5) traffic and send them to a kafka topic. The Netflow processor could thus treat these events and generate corresponding logisland records. The following processors in the stream can then process the Netflow records generated by this processor.

 <no title>

 The ParseNetworkPacket processor is the LogIsland entry point to parse network packets captured either off-the-wire (stream mode) or in pcap format (batch mode). In batch mode, the processor decodes the bytes of the incoming pcap record, where a Global header followed by a sequence of [packet header, packet data] pairs are stored. Then, each incoming pcap event is parsed into n packet records. The fields of packet headers are then extracted and made available in dedicated record fields. See the Capturing Network packets tutorial [http://logisland.readthedocs.io/en/latest/tutorials/indexing-network-packets.html] for an example of usage of this processor.

 <no title>

 The user-agent processor allows to decompose User-Agent value from an HTTP header into several attributes of interest. There is no standard format for User-Agent strings, hence it is not easily possible to use regexp to handle them. This processor rely on the YAUAA library [https://github.com/nielsbasjes/yauaa] to do the heavy work.

 <no title>

 Adds the Contents of a Record to HBase as the value of a single cell.

 <no title>

!!!! WARNING !!!!

The RunPython processor is currently an experimental feature : it is delivered as is, with the current set of features and is subject to modifications in API or anything else in further logisland releases without warnings. There is no tutorial yet. If you want to play with this processor, use the python-processing.yml example and send the apache logs of the index apache logs tutorial. The debug stream processor at the end of the stream should output events in stderr file of the executors from the spark console.

This processor allows to implement and run a processor written in python. This can be done in 2 ways. Either directly defining the process method code in the script.code.process configuration property or poiting to an external python module script file in the script.path configuration property. Directly defining methods is called the inline mode whereas using a script file is called the file mode. Both ways are mutually exclusive. Whether using the inline of file mode, your python code may depend on some python dependencies. If the set of python dependencies already delivered with the Logisland framework is not sufficient, you can use the dependencies.path configuration property to give their location. Currently only the nltk python library is delivered with Logisland.

 <no title>

 Query matching based on Luwak [http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/]

you can use this processor to handle custom events defined by lucene queries
a new record is added to output each time a registered query is matched

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide [https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description] for supported operations

Warning

don’t forget to set numeric fields property to handle correctly numeric ranges queries

 <no title>

 Decode one or more field containing an URL with possibly special chars encoded.

 <no title>

 Compute the source of traffic of a web session. Users arrive at a website or application through a variety of sources,
including advertising/paying campaigns, search engines, social networks, referring sites or direct access.
When analysing user experience on a webshop, it is crucial to collect, process, and report the campaign and traffic-source data.
To compute the source of traffic of a web session, the user has to provide the utm_* related properties if available
i-e: utm_source.field, utm_medium.field, utm_campaign.field, utm_content.field, utm_term.field)
, the referer (referer.field property) and the first visited page of the session (first.visited.page.field property).
By default the source of traffic information are placed in a flat structure (specified by the source_of_traffic.suffix property
with a default value of source_of_traffic). To work properly the setSourceOfTraffic processor needs to have access to an
Elasticsearch index containing a list of the most popular search engines and social networks. The ES index (specified by the es.index property) should be structured such that the _id of an ES document MUST be the name of the domain. If the domain is a search engine, the related ES doc MUST have a boolean field (default being search_engine) specified by the property es.search_engine.field with a value set to true. If the domain is a social network , the related ES doc MUST have a boolean field (default being social_network) specified by the property es.social_network.field with a value set to true.

 <no title>

 Add one or more field with constant value or dynamic value using the expression-language.Some examples of settings:

newStringField: bonjour
newIntField: 14
newIntField.field.type: INT

Would add those fields in record :

Field{name='newStringField', type='STRING', value='bonjour'}
Field{name='newIntField', type='INT', value=14}

Here a second example using expression language, once for the value, once for the key. Note that you can use for both.We suppose that our record got already those fields :

Field{name='field1', type='STRING', value='bonjour'}
Field{name='field2', type='INT', value=14}

This settings :
.. code:

newStringField: ${field1 + "-" + field2}
fieldToCalulateKey: 555
fieldToCalulateKey.field.name: ${"_" + field1 + "-"}

Would add those fields in record :

Field{name='newStringField', type='STRING', value='bonjour-14'}
Field{name='_bonjour-', type='STRING', value='555'}

As you probably notice, you can not add fields with name ending by either ‘.field.name’ either ‘.field.type’ because they are suffix are used to sort dynamic properties. But if you really want to do this a workaround is to specify the name of the field oui expression language, for example this settings would work:

fieldWithReservedSuffix: bonjour
fieldWithReservedSuffix.field.type: INT
fieldWithReservedSuffix.field.type: myfield.endind.with.reserved.suffix.field.type

 <no title>

 This processor is used to create a new set of fields from one field (using regexp).

 <no title>

 Indexes the content of a Record in a Datastore using bulk processor.

 <no title>

 Add one or more records representing alerts. Using a datastore.

 <no title>

 Compute threshold cross from given formulas.

	each dynamic property will return a new record according to the formula definition

	the record name will be set to the property name

	the record time will be set to the current timestamp

 <no title>

 Compute tag cross from given formulas.

	each dynamic property will return a new record according to the formula definition

	the record name will be set to the property name

	the record time will be set to the current timestamp

a threshold_cross has the following properties : count, sum, avg, time, duration, value

 <no title>

 Converts a field value into the given type. does nothing if conversion is not possible.

 <no title>

 Convert one or more field representing a date into a Unix Epoch Time (time in milliseconds since &st January 1970, 00:00:00 GMT)…

 <no title>

 This is a processor that logs incoming records.

 <no title>

 Enrich input records with content indexed in datastore using multiget queries.
Each incoming record must be possibly enriched with information stored in datastore.
The plugin properties are :

	es.index (String) : Name of the datastore index on which the multiget query will be performed. This field is mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.

	record.key (String) : Name of the field in the input record containing the id to lookup document in elastic search. This field is mandatory.

	es.key (String) : Name of the datastore key on which the multiget query will be performed. This field is mandatory.

	includes (ArrayList<String>) : List of patterns to filter in (include) fields to retrieve. Supports wildcards. This field is not mandatory.

	excludes (ArrayList<String>) : List of patterns to filter out (exclude) fields to retrieve. Supports wildcards. This field is not mandatory.

Each outcoming record holds at least the input record plus potentially one or more fields coming from of one datastore document.

 <no title>

 Evaluates one or more JsonPath expressions against the content of a FlowFile. The results of those expressions are assigned to Records Fields depending on configuration of the Processor. JsonPaths are entered by adding user-defined properties; the name of the property maps to the Field Name into which the result will be placed. The value of the property must be a valid JsonPath expression. A Return Type of ‘auto-detect’ will make a determination based off the configured destination. If the JsonPath evaluates to a JSON array or JSON object and the Return Type is set to ‘scalar’ the Record will be routed to error. A Return Type of JSON can return scalar values if the provided JsonPath evaluates to the specified value. If the expression matches nothing, Fields will be created with empty strings as the value.

 <no title>

 Expands the content of a MAP field to the root.

 <no title>

 Keep only records based on a given field value.

 <no title>

 Converts each field records into a single flatten record…

 <no title>

 This is a processor that make random records given an Avro schema.

 <no title>

 modify id of records or generate it following defined rules.

 <no title>

 Retrieves a content from datastore using datastore multiget queries.
Each incoming record contains information regarding the datastore multiget query that will be performed. This information is stored in record fields whose names are configured in the plugin properties (see below) :

	collection (String) : name of the datastore collection on which the multiget query will be performed. This field is mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.

	type (String) : name of the datastore type on which the multiget query will be performed. This field is not mandatory.

	ids (String) : comma separated list of document ids to fetch. This field is mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.

	includes (String) : comma separated list of patterns to filter in (include) fields to retrieve. Supports wildcards. This field is not mandatory.

	excludes (String) : comma separated list of patterns to filter out (exclude) fields to retrieve. Supports wildcards. This field is not mandatory.

Each outcoming record holds data of one datastore retrieved document. This data is stored in these fields :

	collection (same field name as the incoming record) : name of the datastore collection.

	type (same field name as the incoming record) : name of the datastore type.

	id (same field name as the incoming record) : retrieved document id.

	a list of String fields containing :

	field name : the retrieved field name

	field value : the retrieved field value

 <no title>

 Changes the name of a field according to a provided name mapping…

 <no title>

 Parse a field made of key=value fields separated by spaces
a string like “a=1 b=2 c=3” will add a,b & c fields, respectively with values 1,2 & 3 to the current Record

 <no title>

 Removes a list of fields defined by a comma separated list of field names or keeps only fields defined by a comma separated list of field names.

 <no title>

 Keep only distinct records based on a given field.

 <no title>

 The SendMail processor is aimed at sending an email (like for instance an alert email) from an incoming record. There are three ways an incoming record can generate an email according to the special fields it must embed. Here is a list of the record fields that generate a mail and how they work:

	mail_text: this is the simplest way for generating a mail. If present, this field means to use its content (value) as the payload of the mail to send. The mail is sent in text format if there is only this special field in the record. Otherwise, used with either mail_html or mail_use_template, the content of mail_text is the aletrnative text to the HTML mail that is generated.

	mail_html: this field specifies that the mail should be sent as HTML and the value of the field is mail payload. If mail_text is also present, its value is used as the alternative text for the mail. mail_html cannot be used with mail_use_template: only one of those two fields should be present in the record.

	mail_use_template: If present, this field specifies that the mail should be sent as HTML and the HTML content is to be generated from the template in the processor configuration key html.template. The template can contain parameters which must also be present in the record as fields. See documentation of html.template for further explanations. mail_use_template cannot be used with mail_html: only one of those two fields should be present in the record.

If allow_overwrite configuration key is true, any mail.* (dot format) configuration key may be overwritten with a matching field in the record of the form mail_* (underscore format). For instance if allow_overwrite is true and mail.to is set to config_address@domain.com, a record generating a mail with a mail_to field set to record_address@domain.com will send a mail to record_address@domain.com.

Apart from error records (when he is unable to process the incoming record or to send the mail), this processor is not expected to produce any output records.

 <no title>

 The SetJsonAsFields processor reads the content of a string field containing a json string and sets each json attribute as a field of the current record. Note that this could be achieved with the EvaluateJsonPath processor, but this implies to declare each json first level attribute in the configuration and also to know by advance every one of them. Whereas for this simple case, the SetJsonAsFields processor does not require such a configuration and will work with any incoming json, regardless of the list of first level attributes.

 <no title>

 This processor is used to create a new set of fields from one field (using split).

 <no title>

 This is a processor that is used to split a String into fields according to a given Record mapping.

 <no title>

 No description provided.

 <no title>

 This is a processor that is used to split a String into fields according to a given Record mapping.

_static/logisland_api_flows.png
Logisland API

Logisland

T3 [each poliing period
alt for any change]

[nothing changed

Application

HTTP 304

[each pushing
perlod (or conf
changed)]

[i B

¢ Ack OK.

www.websequencediagrams.com

_static/minus.png

_static/logcentric.png
A Log-centric Infrastructure Stack

OLAD Stoms Key-Value Sean e
et ' Query Layer Layer
c
Monitoring Stream
& - g [*™ Proces
Graphs sing
N

Hadoop

/ Consumer Group\

_static/logisland-workflow.png
3.
records are

indexed to search
engine while they
appear

¢34 elastic

2.
raw messages
are converted
to structured
records

3.
records are
dumped
periodically to
Hadoop

1.
raw messages
are sent to
Kafka topics for
processing

3.
records are
processed to
extract patterns
or alerts

4,
records are
processed in batch

to build analytics
models

raw messages &
structured records
are both stored in
Kafka topics to be
processed in parallel

analyst

_static/nifi-drag-template.png
& NiFi

@

C O [® sandboxsoso/aifi/

Apps B hurence B logisland B stage <t Spark Streaming Bl questions/résur (I} Mining Console | [H stage | Trello

Rl z R
wo ‘= 0/0bytes @0 w0 »o m3 Ao o 2 12:40:55 UTC Q
@ Navigate E]
@a Ik a_
&y operate =]
NiFi Flow
b Process Group.
32d55107-015b-1000-26e8-0c3f58671bd1
& > =3

_static/nifi-flow.png
& NiFi

& - C [© sandboxsosojnifi/

Rl z R

Apps M hurence M logisland B stage < Spark Streamin M questions/résur (] Mining Console |

o

[stage|Trello

£ 12:47:26 UTC

ListenUDP
Processor

32dbe663-015b-1000-1b17-415e850aab94
& x> E 3
@& o Woaee

@ Navigate E]

W ListenUDP
S =i

& operate E]

n 0(0bytes) 5
Read/Write 0 bytes /0 bytes 5
out 0(0bytes) 5
Tasks/Time 0/00:00:00.000 §

Name success

Queued 0 (0bytes)

W Putkafka

[S) =pa
n 0(0bytes)
Read/Write 0bytes /0
out 0(0bytes)

Tasks/Time 0/00:00:00.000

& Configure
» start

1aa Status History

L Data provenance

© Upstream connections
© Downstream connections
8 Usage

o Change color

© Centerin view

= PutFile
Putfile.

_static/logIsland-architecture.png
Event Producers

Collection

Stream ingestion

Analytics

Transformation &

Stream ingestion

Presentation &

Action

N9 "
e

Applications

ﬂ Ill

ok — —

_--¥ Cloud gateways
(web APIs)

o

Web and Soaal

g
-
p—
-

Logisland

Soark’

ML components
Storage adapters
Analytics
components
Transform data

Storage
Adapters

Stream processing

«1!/4

Solr

- .
=s elasticsearch

w’

cassandra

Documents
Graph
Search
Timeseries
Datalake
SQL

Ll

Web/thick client
dashboards

Data Analytics

nra
===

Bl

Event hub

Devices to take action

_static/logIsland-opc.png
§
:

LOGISLAND

OPC UA
server

FACTORY
LAN

_static/lambda-logCentric.png
A Log-centric Infrastructure Stack

Graph DB
OLAP Store,
Etc

Key-Value | | Sear
Query Layer

rch Query
Layer

Wonfaring
&
Graphs

!

Stream
[Proces
sing

Hadoop

_static/lambda-logicalArchi.png
Business operation

l

Batch Layer

~
’ Periodic snapshot N

Master dataset Batch l‘y,n
; -~
Immutable, Append-only View 1

\
Romdom READ supported
Random WRITE unsupported

Batch Bulk
Processor Loader Serving DB

\Y

Freezed input

Snapshot result
(potentially outdated)

\
N
~
7
Low latency L. I Z’
Incremental merge 17 atesf result 4]
(always updated >
Transaction Continuous Realtime Query g
Data Stream update Serving DB Processor c
c
Blend batch & realtime result O

Resolve conflict

Realtime Layer

_static/chronix-record.jpeg
(1) Semantic (2) Attributes (3) Basic (4) Multi-
Compression and Chunks Compression Dimensional Storage

= e Record
<chunk> C‘Zgﬁ;‘;’gﬂ’ Storage

Attributes Attributes

_static/ajax-loader.gif

_static/apple-touch-icon-144-precomposed.png

_static/comment.png

_static/data-driven-computing.png
Log Parser/

System Monitoring/
b """ Actions

Anomaly Fault Problem
Detection Diagnosis Determination

I
! ==
Real Time Management I [oy
_____________________ I Correlation/Dependency
Knowledge

torical Knowledge Management
E"‘ Collection | == i

N — T
- [EOtfine Analysiss S=Ses S S |

_static/comment-bright.png

_static/comment-close.png

_static/data-pyramid-mccandless.png
information

_static/sparkcontext-broadcast-executors.png
Executor

Spark application aa. Driver

roadcast (m)

Executor

Executor

_static/data-to-knowldege.png
nter-ccnrected

A

knowledge

information

inked

information

stnuctures

datc

.-.
NCIE
. B .
G
L] ® 53

s <N
e

o rue
R
-
-00-

* nue
m

Ahe 8 L
m_m " w i

_static/up-pressed.png

_static/traces.png
Traces

Traffic Capture Start

J;: Ato B: Port 81

b AtoC: Port 80

e}

Traffic
Capture End

K- A to D: Port 347

T: C to F: Port 80

=]

it

Time

_static/up.png

_static/spark-architecture.png
e Spark Driver

o separate process to execute user
applications

Driver Program

SparkContext

o creates SparkContext to schedule

jobs execution and negotiate with
cluster manager

e Executors
o run tasks scheduled by driver

o store computation results in
memory, on disk or off-heap
o interact with storage systems
e Cluster Manager

o Mesos
o YARN
o Spark Standalone

_static/solr-query.png
L

Solf

@ Dashboard
(3 Logging

£ Core Admin

(2 Java Properties

Thread Dump

solrapache-ogs

Y

[

B

1 E & o

1‘\\\

Request-Handler (qt)
Jselect

common

fq

sort

start, rows

[

df

Raw Query Parameters

keyl=vall&key2=val2

wt

json

@ indent
debugQuery

dismax
edismax
hi

facet

spatial

spellcheck

1{

“responseHeader":{

"QTime":0,

http_version":"HTTP/1.0",
http_status":'304"

http_version":"HTTP/L.
"http_status":"200",
"b6aa0fe7-62674523-b693-7dcfB0C56b54",

http_version":" HTTP/1.0",
http_status"'200",
20790cC6-3149-4790-8116-1396696b0520

user":',
version"1585034992084566016}.

- ip":unicomps.unicomp.net",
http_method":"GE
“http_query":*/shuttle/countdown/count gif",

http_statu:
0cfccb94-b920-4d7a-bea3-7490081dba31",

src_ip
“http_method"'GET",

images/NASA-ogosmall gif",
"bytes_out":' 786",

entd"

http_version
“http_status":
fedbf5d9-c30c-468Fae76-60f48bd1dbob",

http_version":"HTTP/1.0",
http_status":'200"

. ip":"waters-gw.starwaynet.au",
"http_method":'GET",
shuttle/missions/51-ymission-51-L html",
6723",

http_version":"HTTP/L.
“http_statu
+"a38b0192-2855-4272-a874-270835¢27a17",

http_version":"HTTP/1.0",
http_status":"20
€4b93791-300b-4e52-bfcd-d5ffdc54d7f1

user':',
_version_1585034992110780416}.

- ip":unicomps.unicomp.net",
http_method":"GE
“http_query":*/shuttlecountdown/",

http_statu:
"8ac55ab2-0e3¢40a7-be90-c62b67feB687",

_version_1585034992111828992],

sr_ip":*dial22.lloyd.co
“http_method"'GET",
shuttle/missions/sts-71/images/KSC-95EC-0613.jpg",
61716",

entd"
http_version
“http_status":
36008d0a-b8a9-42be-afBd-e2cdc8169a30",

*_version_":1585934992114974720}]
n

[Documentation 4 Issue Tracker

2R IRC Channel

(4 Community forum

Use original Ul &

o] solr Query syntax

_static/spark-rdd.png
Spark Application Workers

User Program

val sc = new SparkContext(conf) ¢

val rdd = sc.cassandraTable(...) [
-map(...)
-filter(...)
~keyBy(...)
.reducesyKey(...)
.cache()

_static/spark-job-monitoring.png
® © @ /[indexapacheLogs - Streamin: X 9‘

& > C | ® localhost:4050/streaming/ ex|Ee ¥ Ga ¥ +0:
i apps [[USI] Lambda-Archi.. “3 Pragmatic Program... By Getting started wi @ RegEx Quick Refere... § Improved Fault-tole.. & NiFi [J] Partitions and Parti.. [Kafka Consumer Of.. @) Ambari-hurence [1 Yarn - hurence &2 ES - hurence »

Spoﬁ? s Jobs Stages Storage Environment Executors = Streaming IndexApacheLogs application Ul

Streaming Statisti

Running batches of 4 seconds for 2 minutes 54 seconds since 2016/11/10 11:06:00 (22 completed batches, 775121 records)

Timelines (Last 42 batches, 20 active, 22 completed) Histograms

events/sec
20,000.00:
15,000.00
» Input Rate 10,0000
Aug: 5969.59 eventslsee g 00 00 /\
000
06:08

REE

0 5 10 15 20

‘Scheduling Delay
Avg: 58 seconds 518 ms

Processing Time
Avg: 7 seconds 231 ms

Total Delay
Avg: 1 minute 4 seconds.

Active Batches (20)

Batoh Time ‘Scheduling Delay Output Ops: Succeeded/Total
2016/11/10 11:08:52 -

2016/11/10 11:08:48 -

2016/11/10 11:08:44

2016/11/10 11:08:40

2016/11/10 11:

_static/spark-streaming.png
Batch

Interval

<

1

o O B2 W N

- O o0

[1]2]s]els]ol7fsfofu0
1]z]s]e]s]efrfsfofw
[1]2]slels]el7]sfo]
1]2]s]ssfefzfafo o)

nonnpnanon
- Ionanpnon
nnoannon
nonEnoon
G
 pEnon

In window

P&ing Processing

s o[
e e]
o[e[
e]
[e[
[e[
e]
o[[
monmnn
L[]

Evicted

original
DStream

windowed
DStream

time 1

window
at time 1

time 2 time 3 time 4 time 5

O---{0--0---O

window-based
operation

window
attime 5

window
attime 3

_static/spark-streaming-packet-capture-job.png
¢ & C | ® 127001:4050/streaming/ aww 51 » A
Spoﬁ? o Jobs Stages Storage Environment Executors | Streaming parsePCapEventsDemo application Ul
Streaming Statistics
Running batches of 4 seconds for 7 minutes 42 seconds since 2017/04/26 19:42:01 (115 completed batches, 9004 records)
Timelines (Last 115 batches, 0 active, 115 completed) Histograms
records/sec 0 20 40 60 80 100 #baiches
100.00
80.00
» Input Rate 60.00
Avg: 19.57 records/sec 4000
20.00
0.00
19:42:08 19:49:44
sec 20 40 60 80 100 #baiches
s s s s
5.00
4.00
Scheduling Delay) 3.00
Avg: 26 ms 200
1.00
000 ———
19:42:08 19:49:44
sec 20 40 60 80 100 #baiches
s s s s
5.00
4.00
Processing Time (?) 3.00
Avg: 458 ms 200
1.00 -
0.00
19:42:08 19:49:44
sec 0 20 40 60 80 100 #baiches
o i o e
5.00
4.00
Total Delay (7 3.00
Avg: 484 ms 200
1.00 -
0,00
19:42:08 19:49:44
Active Batches (0)
Batch Time Input Size ‘Scheduling Delay (7 Processing Time (?) ‘Output Ops: Succeeded/Total Status.

Completed Batches (last 115 out of 115)

Batch Time Input Size ‘Scheduling Delay (7 Processing Time () Total Delay) Output Ops: Succeeded/Total

2017/04126 19:49:44. 16 records. 6ms 02s 02s [J—
2017/04126 19:49:40 18 records. 7ms 02s 02s [R
2017/04126 19:49:36 12 records. 2ms 02s 02s [J—
2017/04126 19:49:32 14 records. ams 02s 03s [R
2017/04/26 19:49:28 10 records. 1ms 03s 03s [J—
2017/04126 19:49:24 12 records. oms 03s 03s [R
2017/04126 19:49:20 16 records. 2ms 02s 02s [J—
2017/04126 19:49:16 16 records. 5ms 03s 03s [R
2017/04126 19:49:12 65 records 3ms 03s 03s [J—
2017/04/26 19:49:08 55 records 2ms 01s 01s [R
2017/04126 19:49:04 54 records 1ms 02s 02s [J—
2017/04/126 19:49:00 60 records 1ms 03s 03s [R
2017/04126 19:48:56 73 records 9ms 03s 03s [J—
2017/04126 19:48:52 75 records ams 03s 03s [R
2017/04126 19:48:48 164 records 3ms 04s 04s [J—

_static/es-head.png
000 <

[in]

Elasticsearch

Overview | Indices

Browser

Alndices
Tnocss

ibana
li-apache-2016.02.04
Tvees
default
apache.

config

Frzios

» @timestamp
» buiidNum

» bytessent

D bytessent

» date

» error

P host.

P referer

P request.

P source

P status

» tags

» user

» useragent

Browser

hitor/jsandbox:9200/

Structured Query [+]

@

sandbox

Connect | elasticsearch cluster health: yellow (4 of 5)

Any Request [+]

Searched 4 of 4 shards. 464671 hits. 0.051 seconds

date
1995-07-01T14:39:06.0002
1995-07-01T14:39,
1995-07-01T14:39::
1995-07-01T14:39:
1995-07-01T14:39:
1995-07-01T14:39,
1995-07-01T14:39:
1995-07-01T14:39:
1995-07-01T14:39:
1995-07-01T14:39,
1995-07-01T14:39:
1995-07-01T14:39:
1995-07-01T14:39:!
1995-07-01T14:39,
1995-07-01T14:39:!
1995-07-01T14:39:
1995-07-01T14:40:03.0002
1995-07-01T14:40:03.0002
1995-07-01T14:40:11.0002
1995-07-01T14:40:12.0002
1995-07-01T14:40:17.0002
1995-07-01T14:40:17.0002
1995-07-01T14:40:20.0002
1995-07-01T14:40:24.0002
1995-07-01T14:40:29.0002
1995-07-01T14:40:34.0002
1995-07-01T14:40:42.0002
1995-07-01T14:40:42.0002
1995-07-01T14:40:42.0002
1995-07-01T14:40:47.0002
1995-07-01T14:40:50.0002
1995-07-01T14:40:53.0002
1995-07-01T14:40:57.0002
1995-07-01T14:40;
1995-07-01T14:41:
1995-07-01T14:41:
1995-07-01T14:41:
1995-07-01T14:41;
1995-07-01T14:41:
1995-07-01T14:41:
1995-07-01T14:41:10.0002

request
GET / HTTP/1.0

GET /images/WORLD-logosmall.gif HTTP/1.0

‘GET /images/USA-logosmall.gif HTTP/1.0

GET /shuttle/countdown/liftoff.html HTTP/1.0

‘GET /software/winvn/faq/WINVNFAQ-Contents.html HTTP/1.0

GET /images/USA-logosmall.gif HTTP/1.0

GET /history/apolio/apolio-17/apolio-17.html HTTP/1.0

GET /shuttle/missions/sts-71/sts-71-day-04-highlights.html HTTP/1.0
‘GET /shuttle/countdown/liftoff.html HTTP/1.0

GET /images/WORLD-logosmall.gif HTTP/1.0

GET /images/launchmedium.gif HTTP/1.0

GET /shuttle/missions/sts-71/sts-71-patch-small.gif HTTP/1.0

‘GET /shuttle/technology/sts-newsref/sts_overview.html HTTP/1.0
GET /shuttle/countdown/ HTTP/1.0

‘GET /images/USA-logosmall.gif HTTP/1.0

GET /images/dual-pad.gif HTTP/1.0

‘GET /shuttle/countdown/video/livevideo.gif HTTP/1.0

GET / HTTP/1.0

GET /shuttle/missions/sts-71/images/KSC-95EC-0911.jpg HTTP/1.0
GET /shuttle/missions/sts-71/images/KSC-95EC-0913.gif HTTP/1.0
‘GET /shuttle/countdown/video/livevideo.gif HTTP/1.0

GET /images/USA-logosmall.gif HTTP/1.0

GET /history/apolo/apolio-8/apollo-8-patch-small.gif HTTP/1.0
GET /shuttle/countdown/ HTTP/1.0

GET /shuttle/technology/sts-newsref/stsref-toc. html HTTP/1.0
GET /history/apollo/images/footprint-small.gif HTTP/1.0

GET /images/launch-logo.gif HTTP/1.0

GET /images/KSC-logosmall.gif HTTP/1.0

GET /history/apolio/apollo-spacecraft.txt HTTP/1.0

GET /software/winvn/faq/WINVNFAQ-V-3.html HTTP/1.0

GET /shuttle/missions/sts-71/movies/sts-71-mir-dock.mpg HTTP/1.0
‘GET /shuttle/missions/sts-74/mission-sts-74.html HTTP/1.0

GET /shuttle/missions/sts-71/images/images.html HTTP/1.0

‘GET /shuttle/missions/sts-66/mission-sts-66.html HTTP/1.0

GET /shuttle/missions/missions.html HTTP/1.0

GET /cgi-bin/imagemap/countdown?101,174 HTTP/1.0

GET /shuttle/missions/sts-69/sts-69-patch-small.gif HTTP/1.0

GET /history/ HTTP/1.0

‘GET /shuttle/countdown/liftoff.html HTTP/1.0

GET /images/NASA-logosmall.gif HTTP/1.0

GET /shuttle/countdown/countdown.html HTTP/1.0

@timestamp

1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:

39:
39
39:
39:
39:
39
39:
39:
39:
39
39:
39:
39:
39
39:
39:
40:
40
40:11.0002
40:
40:17.0002
40:17.0002
40:20.0002
40:24.0002
40:29.0002
40:34.0002
40:42.0002
40:42.0002
40:42.0002
40:47.0002
40:50.0002
40:53.0002
40:57.0002
40
a1
a1
a1
a1,
a1
a1
41:10.0002

host
‘WWw-b6.proxy.ol.com
131.9252.11
131.9252.11
ix-phi3-15.
buffnets.buffnet.net
slip168-193.5y.au.lbm.net
solb.sc.ic.ac.uk
PppO-132.metropolis.nl
sladi1p2s.ozemail.com.au
slip168-193.5y.au.lbm.net
dd12-018.compuserve.com
slip-25-2.0ts.utexas.edu
t51-77.slip.uwo.ca
2d14-009.compuserve.com
134.209.40.202

netcom.com

ix-nbw-nj1-22.ix.netcom.com
netblazer1-s15.telalink.net
ads1-ts1.adsnet.com

vulean. cec.cranfield.ac.uk
ix-nbw-nj1-22.ix.netcom.com
131.182.28.171
ari23.jones.edu
slip168-193.sy.au.lbm.net
eic73.fiu.edu
slip168-193.sy.au.lbm.net
slip168-193.5y.au.lbm.net
eic73.fiu.edu
buffnets.buffnet.net
pm1-10.america.net
194.64.27.238
p58.euronet.nl
slip137-14.pt.uk.ibm. net
dd12-007.compuserve.com
slip-25-2.0ts.utexas.edu
dd12-018.compuserve.com
Pc71152.dialup.rwth-aachen.de
193.246.47.75
houston.clark.net
194.65.6.194

source
Www-b6.proxy.aol.com - - [0
131.92.52.11 - - [01/3ul/199
131.92.52.11 - - [01/3ul/199
ix-phi3-15.ix.netcom.com - -
buffnets. buffnet.net - - [01/J
slip168-193.5y.2u.ibm.net - -
solb.sc.ic.ac.uk - - [01/3ul/15
PPPO-132.metropolis.nl - - [C
sladi1p25.0zemail.com.au - -
slip168-193.5y.2u.ibm.net - -
dd12-018.compuserve.com -
slip-25-2.0ts.utexas.edu - - [
t51-77.slip.uwo.ca - - [01/ul
ad14-009.compuserve.com -
134.209.40.202 - - [01/3ul/1
eic73.fiu.edu - - [01/ul/199¢
ix-phi3-15.ix.netcom.com - -
ix-nbw-nj1-22.ix.netcom.com
netblazer1-s15.telalink.net -
ads1-ts1.adsnet.com - - [01/,
vulcan.cce.cranfield.ac.uk - -
ix-nbw-nj1-22.ix.netcom.com
131.182.28.171 - - [01/3ul/1
arl23 jones.edu - - [01/3ul/1¢
slip168-193.5y.au.ibm.net - -
eic73.fiu.edu - - [01/ul/199¢
slip168-193.5y.au.ibm.net - -
slip168-193.5y.2u.ibm.net - -
eic73.fiu.edu - - [01/ul/199¢
buffnets. buffnet.net - - [01/J
pmi1-10.america.net - - [01/2
194.64.27.238 - - [01/Jul/19
pS8.euronet.nl - - [01/Jul/19
slip137-14.pt.uk.ibm.net
dd12-007.compuserve.com -
slip-25-2.ots. utexas.edu -
dd12-018.compuserve.com -
Pc71152.dialup.rwth-aachen.
193.246.47.75 - - [01/Jul/19
houston.clark.net - - [03/Jul/
194.65.6.194 - - [01/3ul/199
195

_static/features.png
Collecte des

données

X

ENVOYER

Les données de log
sont envoyées
depuis les
Appliances ou
Proxy sur les
systemes de fichier
finux, par fip ou via
Tinstallation d'un
agent.

=

Traitements
big data

machine
learning

34
g
TRAITER

Les logs sont

pré-traités,
enrichis

indexés

étiquetés

agréges sur Hadoop

par un flux de collecte
temps réel avant detre

groupés par
empreinte réseau

par des procédures de
machine leaming

@

VISUALISER

ALERTER

RECHERCHER

]

ANALYSER

SUPERVISER

Les évenements sont visualisés
par des series temporelies.

Des alertes sont lancées lors de
Ia détection de patterns ou le
dépassement de seuils
prégéfinis

On peut rechercher des
‘événements partculiers via des
expressions réguliéres en
définissant des indicateurs

Les tableaux de bord de
oraphes et s clusters de
races permetent de
comprendre le comportement
de certaines machines (zoom,
click, drag)

I faut surveller Tétat de
Tinrasiructure (mémaire, cpu,
occupation disque)

_static/down.png

_static/kafka-design.png
Consumer Group

_static/kafka-mgr.png
+ Brokers

Host

sandbox

9092

JMX Port

10101

Bytes In

Bytes Out

Combined Metrics

Rate
Messages in /sec

Bytes in /sec

Bytes out /sec

Bytes rejected /sec
Failed fetch request /sec

Failed produce request /sec

eeo00He
66666
86600

1min

5min

15 min

666008

_static/file.png

_static/hurence-logo.jpeg
@ hurence

_static/kafka-usecase.png
oo {Tade

Tioe - togn
acar 10301010

Events

Tioe {Tde

Tioe - togn
a9 821

[e—

_static/plus.png

_static/nifi-template-dialog.png
<
Apps B hurence B logisland Bu stage

spark Streaminc [questions/résur

Upload Template

Select Template Q.

nifi_netflow.xml

CANCEL

{0 Mining Console

[stage | Trello

_static/solr-dashboard.png
Use original Ul &

d pm—
S [r Z | dwstance ystem 050053052 '
() @ start about 3 hours ago Prysical Memory
ST = vione
Loggin
8 Loggng 2 solrspec 662
¥ core Admin solr-impl 6.6.2 dfade29b55369876760bb741d687e47b67f9613 - ishan - 2017-10-15 22 Swap Space
Java Properties. o lucenespec 6.6.2
= Thread Dump luceneimpl 6.6.2 df4de20b55369876769bb7410687e47b6 7119613 - ishan - 2017-10-15 22
Core Selector File Descriptor Count 0
2w = JVM-Memory -
[runtime Oracle Corporation OpenJDK 64-Bit Server VM 1.8.0_151 25.151-b12
B Processors 8
a | -
s DSTOPKEY=solrrocks 25,05 78
-DSTORPORT=7983
“Dietty home=/home/chokwork/hurence/solr/solr6.6.2/server
Diettyport-8983
“Dsol.nstall.dir=/home/chok/work/hurencesolr/solr-6.6.2
-Dsolr.log.dir=/home/chok/work/hurence/solfsolr-6.6.2/serverflogs
-Dsolrlog.muteconsole

_static/down-pressed.png

_static/kibana-configure-index-netflow.png
|/ Ml settings-kibana x ([ApacheSpot (incul. x \\

<« C () | ® sandbox:5601/app/kibana#/settings/indices/?_g=(refreshinterval:(display:'5%20seconds’pause:it,section:1value:s ¥ | [@ Bk

Apps B hurence M logisland Wm stage <7 Spark Streaminc M questions/résur [} Mining Console | [I stage | Trello

Index Patterns

et Configure an index pattern

patter. You must select or

create one fo confinue. In order to use Kibana you must configure at least one index pattern. Index patterns are used to identify the Elasticsearch index to run search

‘and analytics against. They are also used to configure fields.

9l Index contains time-based events

) Use event times to create index names [DEPRECATED]

Index name or pattern

Patterns allow you to define dynamic index names using * as a wildcard. Example: logstash-*

netflow:

) Do not expand index pattern when searching (Not recommended)

By defaul, searches against any time-based index pattern that contains a wildcard will automatically be expanded to query only the
indices that contain data within the currently selected time range.

Searching against the index pattern logstash-" wil actually query elasticsearch for the specific matching indices (e.g. logstash-2015.12.21)
that fall within the current time range.

Time-fieldname @ refresh fields

@timestamp v

_static/kibana-configure-index-packet.png
<« C' | ® 127.00.1:5601/app/kibana#/settings/indices/?_g=(refreshinterval:(display:Off, pause:!f,value:0),time:(from:now-15m,mode:quick to:now)) amw 1 & A

Dashboard

Advanced Objects Status

Index Pattems.

[No defaultindex pattern. You must selector Configure an index pattern

create one to continue:
In order to use Kibana you must configure at least one index pattem. Index pattems are used to identify the Elasticsearch index to run search and analytics against. They are also used to configure fields

¥l Index contains time-based events

Use event times to create index names [DEPRECATED]
Index name or pattern
Pattems allow you to define dynamic index names using * as a wildcard. Example: logstash-*

peap’

Do not expand index pattern when searching (Not recommended)
By default, searches against any time-based index pattem that contains a wildcard will automatically be expanded to query only the indices that contain data within the currently selected time range
‘Searching against the index pattem logstash-* il actually query elasticsearch for the specific matching indices (e.g. logstash-2015.12.21) that fall within the current time range.

Time-field name @ refresh fields.

@timestamp

_static/kibana-blockchain-dashboard.png
Dashboard / Main Dashboard Share Edit Reporting < @ April 9th 2018, 09:14:03.028 to April 9th 2018, 09:18:40.297

Re
4

Filter...

Metrics Most Frequent Addresses

The container is too small to display the entire cloud. Tags might be cropped or omitted.

12B5LnSBedsTGUCaYIbTWSudDRKPaVUPH 1266irfBC52)IDVKWASIGGQNidsihLiNpo
S 13LXepHGTBYGNQFNWvilLaeAGMeeSuBAVE

08 039 247 833 TFeexV6hAHL8YLZinQMjlrcCrHGWIsh6uF

34roKKPLOTHGU2PuT12tD69G6ZkensviVeK

315,257,221.382

Transactions

@ Tx Value (Satoshi)
100,000,000,000

80,000,000,000

60,000,000,000

Tx Value (Satoshi)

40,000,000,000

20,000,000,000

09:14:30 09:15:00 09:15:30 09:16:00 09:16:30 09:17:00 09:17:30 09:18:00 09:18:30

@timestamp per 5 seconds

_static/kibana-blockchain-records.png
Discover
Visualize
Dashboard
Timelion

Machine Learning

Graph

Dev Tools

Monitoring

Management

444 hits
Search...

logisland.*
Selected Fields
? _source
Available Fields

© @timestamp
t _id

t _index

_score

t _type

t hash

7 inputs

lock_time

7 out

t record_id
record_time
t record_type
t relayed_by
size

time

tx_index

ver

vin_sz

vout_sz

New Save Open Share Reporting < O Last 15 minutes

(<] April 9th 2018, 09:10:06.666 - April 9th 2018, 09:25:06.667 — Auto 4
€
60
€ 40
=1
o
o
20
0
09:11:00 09:12:00 09:13:00 09:14:00 09:15:00 09:16:00 09:17:00 09:18:00 09:19:00 09:20:00 09:21:00 09:22:00 09:23:00 09:24:00
[A) @timestamp per 30 seconds
Time « _source

v April 9th 2018, 09:18:15.000 @timestamp: April 9th 2018, ©9:18:15.000 hash: ce45af75054883011802e7fe72e91dc6b3458df6bfcd0af6106fc89aada8270b inputs: { "sequenc
e": 4294967294, "prev_out": { "addr_tag_link": null, "addr_tag": null, "spent": true, "tx_index": 340816748, "type": @, "addr": "1EKN)
GfjkQy8ZaKDifWxceohKUYgjXwkox", "value": 20276, "n": 412, "script": "76a9149213168c43d12a28b3c4beb680d64946be83e97388ac" }, "script":
"483045022100b19a3597c5f5d5d8fela2d73236583a7f4b1051b6b319429edfd4aba366a39b0220336f8db67b@50b11dcb76bd767fed33823d35905dcc4a@9f@bfb?
2c6bd41e7e0012102f5550029e91e273862e8b892a71ae3ae6b26a50ab93664f6b6494b96060c369b" }, { "sequence": 4294967294, "prev_out": { "addr_tc

Table JSON View surrounding documents View single documen

© @timestamp @ Q@ @M % April 9th 2018, 09:18:15.000

t _id @ @ @ * aebl9bde-0c07-4a30-b67c-17edad5151cc
t _index @ @ @ # logisland.2018.04.08
_score Qad*x -
t _type @ @ @ * kafka_connect
t hash @ Q [@ % ce45af75054883011802e7fe72e91dcb6b3458df6bfcd0af6106fc89aada8270b
7 inputs @ om*k A
{

"sequence": 4294967294,
"prev_out": {
"addr_tag_link": null,
"addr_tag": null,
"spent": true,
"tx_index": 340816748,
"type": 0,
"addr": "1EKNXGfjkQy8ZaKDifWxceohKUYgjXwkox",
"value": 20276,

_static/kibana-excel-logs.png
kibana

Discover
Visualize
Dashboard
Timelion

Machine Learning
Graph

Dev Tools
Monitoring

Management

Welcome to X-Pack!

Sharing your cluster statistics with us helps us improve. Your data is never shared with anyone. Not interested? Opt out here.

700 hits

New Save Open Share Reporting £ @ Last5 years

Bearch...

logisland*
Selected Fields
? _source
Available Fields

© @timestamp
t _id

t _index

_score

t _type

cogs

t country

t discount_band
discounts

gross_sales

manufacturing
t month_name
month_number
t product

profit

2014-01-01

®

Time

» December 1st 2014, 00:00:00.000

» December 1st 2014, 00:00:00.000

March 14th 2013, 23:23:18.967 - March 14th 2018, 23:23:18.967 — Auto s

2015-01-01 2016-01-01 2017-01-01

@timestamp per month

_source

@timestamp: December 1st 2014, 00:00:00.000 cogs: 3,165 country: France
discount_band: Low discounts: 253.2 gross_sales: 12,660 manufacturing:
10 month_name: December month_number: 12 product: Paseo profit: 9,241.8
record_id: 487d5dfb-1lcdl-45ed-b3db-645047ec906f record_time: 1,417,388,40

0,000 record type: excel sale_price: 12 sales: 12,406.8 segment: Channe

@timestamp: December 1st 2014, 00:00:00.000 cogs: 3,252 country: Mexico
discount_band: Low discounts: 260.16 gross_sales: 13,008
manufacturing: 10 month name: December month number: 12 product: Paseo
profit: 9,495.84 record_id: 016f53al-eccd-4472-973c-e18222794fe2
record_time: 1,417,388,400,000 record type: excel sale price: 12

>

_static/kibana-explore.png
e0e < [n] -] sandbox [DEE

kl bana Discover Visualize ~ Dashboard Settings

Selected Fields May 8th 1995, 14:14:53.216 - November 25th 1995, 06:30:52.010 — by day.
3,000
Available Fields .
a £ 2000
@timestamp 38
1,000
- TR
index o
. 1995-06-01 1995-07-01 1995-08-01 1995-09-01 1995-10-01 1995-11-01
_score ‘@timestamp per day
—type
-
bytessent
Time _source
date
(== ~ July 28th 1995, 19:32:22.000 request: GET /images/USA-logosmall.gif HTTP/1.0 source: slipperl2055.iaccess.za - - [28/u1/1995:13:32:22 -0400
1 "GET /images/USA-Togosmall.gif HTTP/1.0" 200 234 date: 28/7u1/1995:13:32:22 -0400, 1995-07-28T17:32:22.000
Quick Count @ (500 @timestamp: July 28th 1995, 19:32:22.000 host: s1ipper12055.iaccess.za bytessent: 234 user: - status: 200
163.205.46.54 aq c3cB4abd-Fc6f-4191-b1c2-702a6434221 _type: apache _index: li-apache-2016.02.04 _sco:
[[1x]
128.159.154.119 aQ Link to /1i-apache-2016.02.04/apache/c3cB4a6d-fc6f-4191-blc2-70aa6434f221
w Table 3sON
‘.5%-55-‘5“ aq @timestamp @ @ M July 28th 1995, 19:32:22.000
128.450.120.170 aq _id @ @ M c3cB4a6d-fc6F-4191-blc2-70aa6434F221
0 _index M 1i-apache-2016.02.04
1n1122095.ksc.nasa.gov aq
[o=~] _score ul
= bytessent @ @ M 234
§ date @ 28/3u1/1995:13:32:22 -0400, 1995-07-28T17:32:22.0002
Quick Count @ (500 ae
host @ @ M slipper12055.iaccess.za

GET /images/USA-logosmall

request @ @ [GET /images/USA-Togosmall.gif HTTP/1.0

iﬁﬂ/maﬂms“""ﬂms source @ @ @ slipper12055.iaccess.za - - [28/3u1/1995:13:32:22 -0400] "GET /images/\USA-logosmall.gif HTTP/1.0" 200 234
status m 200
.
p— user eam -

status

_static/kibana-configure-index.png
e

©® O ® /[indexapacheLogs - Streamine x / [1] Settings - Kibana X ({8 elasticsearch-head % /) cat: output specific number o' x |\
:Off, pause:tfvalue:0) time:(from:now-15m, mode:quick to:now)) tEew Qo $+0

' RegEx Quick Refere... @ Improved Fault-tole... & NiFi [Partitions and Parti.. [} Kafka Consumer Of... #) Ambari - hurence [} Yar - hurence & ES - hurence »

€ C | ® sandbox:5601/appkibana#/settings/indices/?.

3 Pragmatic Program... Iy Getting started wit..

Apps [E] USI) Lambda-Acch.

kibana ~ --

Indices Advanced Objects Status About

Index Patterns

e Gonfigure an index pattern

In order to use Kibana you must configure at least one index pattern. Index patterns are used to identify the Elasticsearch index to run search and analytics against. They are also used to configure fields.

index contains time-based events
7] Use event times to create index names [DEPRECATED]

Index name or pattern
Patterns allow you to define dynamic index names using * as a wildcard. Exampl

logisland.{

Do not expand index pattern when searching (Not recommended)
By default, searches against any time-based index pattern that contains a wildcard will automatically be expanded to query only the indices that contain data within the currently selected time range.
Searching against the index pattern logstash-* will actually query elasticsearch for the specific matching indices (e.g. logstash-2015.12.21) that fall within the current time range.

Time-field name @ refresh fields

@timestamp

_static/kibana-connection-alerts.png
® O ® /1y quenyMatching - Streaming < x) []] Kibana x ({5 elesticsearch-head x { Whatanalyzer should 1use fo x e

refreshinterval: fvalue:0) time: (from:'1995-06-29T22:00:00.000Z'mod... % | [€ @ % & & + O

isplay:Off, pause

€& C | ® sandbox:5601/app/kibana?#/discover

kibana ~ = == = U —
record_type:connectic lert 5 0 5 o

Selected Fields June 30th 1995, 00:00:00.000 - July Bth 1995, 00:00:00.000 — by 3 hours.
<
3000
Available Fields
a £ 200
@timesiamp H
8
. - I IIIII I III I IIII I
. TR PR TR T R L
1995.07.010200 19507020200 199507030200 1995-07-040200 199507050200 1995-07-060200 19950707 0200
~score. ‘@timestamp per 3 hours
type -~
st match_name . ource
Quick Count @ (500 > July 7th 1995, 06:31:54.000 record type: \connection_alert etimestamp: July 7th 1995, 06:31:54.000 alert match mame: blacklisted_host
‘edu_host aa alert_match_query: Src_ip:slip-5.i0.com bytes_out: 49,152 http method: GET http_query: /shuttle/mission
) §/5ts-T1/movies/sts-71-hatch-open.mpg eep_statuss 200 hekp_versions WTTP/L.0 identds - record_ids asi7?
blackisted_host aa) i
= 07-4337-4cfe-ac7a-356216B8cf3e rocord_raw_value: s1ipé2.van2.pacifier.con - - [07/3u1/1995:00:31:54 ~0400]
GET /shuttle/missions /sts-71/movies /sts-71-hatch-onen.mpa HTTP/1.0 200 49152 record tims: 805.091,514,000
Visuaize (1 warning 4)
alert_ match_query > July 7th 1995, 06:31:52.000 record_type: Connection_alert etimestamp: July 7th 1995, 06: 2.000 alert match name: blacklisted_host
bytes_out alert_match query: Src_ip:slip-5.i0.com bytes_out: 40,310 http method: GET http_query: /shuttle/countdow
http_method n/count.gif nttp status: 200 http version: HTTP/1.0 identd: - record_id: Oedcbd53-1118-dcde-aedd-5df2899
i 60972 record_raw_value: s1ipé2.van2.pacifier.com - - [07/3u1/1995:00:31:52 -0400] GET /shuttle/countdown/co
- unt.gif HTTP/1.0 200 40310 record time: 805,091,512,000 sre ip: s1ipd2.van2.pacifier.com user: 1a: Av
hitp_status
hitp_version > 3uly 7th 1995, 06:30:27.000 recora_type: COMMECEiON_AlErt etimestamp: July 7th 1995, 06:30:27.000 alert_match mame: edu_host
identd alert_match_query: src_ipiedu bytes out: 1,932 http method: GET http query: /shuttle/resources/orbiters/
e orbiters-logo.gif http status: 200 http version: WTTP/L.0 identd: - record id: ffc876bb-9b3f-43a4-9laz-e
) 8764el31bab record raw_value: legt-143.dorms.tamu.edu - - [07/Ju1/1995:00:30:27 -0400] GET /shuttle/resourc

es/orbiters/orbiters-1000.qif HTTP/1.0 200 1032 record time: 805.001,427.000 sre ip: leqt-143.dorms.tamu.e
record_raw_value

record_time. > 2uly 7th 1995, 06:30:16.000 record type: \conmectionalert etimestamp: July 7th 1995, 06:
alert_match_query: src_ip:s1ip-5.10.com bytes_out: 66,554 http method: GET http query: /shuttle/countdow

6.000 alert match_name: blacklisted_host

record_type.
@ n/video/livevideo2.gif http_status: 200 http_version: HTTP/1.0 identd: - record id: f5f7455f-8b8f-44c8-8

B e43-flc024e70cca record_raw_value: s1ip239.rig.qc.ca - - [07/3u1/1995:00:30:16 -0400] GET /shuttle/countdow
user

n/video/1ivevideo2.aif HTTP/1.0 200 66554 record time: 805,091,416,000 sre ip: s19p239.ria.oc.ca users

> July 7th 1995, 06:30:12.000 record type: \CONMECtion_alert etimestamp: July 7th 1995, 06:30:12.000 alert match mame: edu_host
alort_match_query: Src_ipiedu bytes out: 28,426 http method: GET http query: /images/mlp-logo.gif
http_status: 200 http_version: HTTP/1.0 identd: - record_id: 83306869-a774-4b09-8e40-bBe20347ccob
record_raw_value: legt-143.dorms.tamu.edu - - [07/3u1/1995:00:30:12 -0400] GET /images/mlp-logo.gif WTTP/1.

0 200 28426 record time: B05.001,412,000 sre ip: leqt-143.dorms.tamu.edu user: a0 AVRNGFIzrAfukoa7EZ

T———— el sttt bttt ittt ittt ettt

_static/kibana-apache-logs.png
® © ® /[y indexapacheLogs - Streamin: x / [Discover - Kibana X ({8 elasticsearch-head x { /) cat: output specific number o' x |\ e

Y

¢ — C @ sandbox:5601/app/kibanat/discover? ¢

refreshinterval:(display:Off,pause:!fyalue:0) time:(from:'1995-06-29T22:00:00.000Z,mo.. A % | [€ @ % @& ¥ + O

CAutorirosh @) June 30t 1995, 0000:00.000 o Jul 8 1995, 0000:00.000.

e o e
e J msaron [|

E - o e

o o e Wt T 7 S e T e

[-

B - |

W mom s a e e

. LRIy

-

‘Seacted ks une 3001995, 0D0D0.000 -l 8 1995, 0000000 — by s
o0 <
Avalabe Fiids o
- = I I II I I II
i
K 5000
= . Lualllllaallllial (TR T Ll
e @timestamp per 3 hours
e .
e
Time _sourcs
it mathod
e > Wy 7th 1995, 14:55:52.000 getmestamps July 7th 1995, 14:55:52.000 Bytes_osts 7,067 Betp sethods GET betp_querys /ksc.hesl Betp statuss 200 besp versions HTTP/L.0
. Ldoatds - xecomd_ids 9afa42f5-0bBE-sesd-b3bS-F2dchaBIBab2 record _cew_valve: 130.103.8.217 - - [07/241/1995:08:55:52 -0400) Ger /ksc.he) w7
. vrsion P/1.0/200 7067 cocord_tines 805,121,752,000 secord_types spache_log sxc_ips 130.103.48.217 wsers - _ids AVBNvsnr4fukONTASIO _types apache_
» log _sadex: logisland 2016.11.09 _score:
) 0g og E
ecors s
> uly 7th 1995, 14i55552.000 getmestampr July 7eh 1995, 16:55:52.000 bytes_outs 5,866 heep methods GET heep querys /inages/ksclogo-sedium.gif hetp_statuss 200
acor ra v
= Bttp version: WITP/LO identds - record id: 36hG982-F533-40fb-b106-03FEChS22909 xecord ca_values spider.the.com - - (07/3u1/1995:08:55:52 -
T 0400) GeT /inages/ksclogo-ediun. 1 HTTP/1.0 200 5366 secord_times 805,121,752,000 record_trpes apache_log src_ips spider.the.con useri -
ecord type 41 AVANEVSQrAFUKOATATKE _trpes apache_Tog _tadexs logisland.2016.11.09 _seores
sreip
user » Wy 7th 1955, 14:55:51.000 getmestamps July 7h 1995, 14:55:51.000 Bytes_outs 3,047 betp methods GET besp_querys /history/apollo/inages/apollo-Togo.gif betp_statuss 20

© hetp_verstons WITP/LO ideneds - record.

© 1c753eda-beea-4773-9bfb-a5369be73441 record_rew_valua: ad03-025. conpuserve.con - - [07/1/199
5:08:55:51 -0400) GeT /history/apollo/inages/apollo-Togo.gi HTTP/1.0 200 3047 record_tise: 805,121,751,000 secord_types apache_log sre_ips ad

03:025.conpuserve.con waers - _{ds AVANEVSQréfukOATATKS _type: apache_log isdess logisland.2016.11.09 _scorer

> 3uly 7th 1985, 14:55i50.000 getmestamps July 7th 1995, 14:55:50.000 byses outs 7,067 heep methods GET hetp querys /ksc.himl heep statuss 200 heep version: WITP/LO

identar - racora La: 496B07S-3b1-46fb-930b-78ee604SSF18 record_rau_value: spider. the.con - - (07/3u1/1995:08:55:50 0400) GET /ksc.hex] HIT
P/1.0 200 7067 rocord_tine: 805,121,750,000 record type: apachelog scc_ips spider.the.com wsers - _ids AVANIngrfukORTAWFH _type: apache_
Tog _tadex: logis1and.2016.11.09 _score:

> 3uly 7th 1985, 14:55:49.000 geimestamps July 7th 1995, 14:55:49.000 byses_outs 40,310 heep methods GET hewp querys /shutle/countdown/count.gif heep_statuss 200
http veraion: HTTP/1.0 dsmtds - record ids ccfacdB0-1162-4F0c-99ef-d31F6S93728 record_raw_valus: gate.chips.ibm.con - - [07/3u1/1995:08:55:
49 -0400] GT /shuttle/countdown/count..giF HTTP/1.0 200 40310 record_tines B05,121,749,000 record type: apachelog see_ips gate.chips. ibm.con
users - _id: AVNGOIZr4fUkOATAYGQ _type: apache log _index: logisland.2016.11.09 _score:

_static/kibana-blacklisted-host.png
® ©® /[querymatching - Streaming < x /|| Kibana

X ({8 elasticsearch-head e

X\

@

C | ® sandbox:5601/app/kibana?#/discover

isplay:Off,pause:!f,value:0),time:(from:'1995-06-29722:00:00.000Z'mod. a‘ Cew Ga$+0

alert_match_name: “blackiisted_host” JEV-CUNS

Visualize (1 warning A

alert_match_query
bytes_out
hitp.method Table Jso
itp_cpiery Gtinestanp
hitp_status, i
http,version index
identd

_score
record_ertors.

—type
record_id

alert_match_name
record_raw_value

alert_match_query
record_time

bytes_out
record_type

http_nethod
src_ip

http_query
user

hetp_status

http_version
identd
record_id

record_raw_value

record_time

record_type

13,233 hits

Selected Fields June 30th 1995, 00:00:00.000 - July Bth 1995, 00:00:00.000 — by 3 hours.
600 <
Available Fields n ¢ o
@timestamp 3
8
20
. I I ||“ ih |“ Lanllh..ult
o R | | | '] n Al n 1]]
199507010200 199507020200 199507030200 1995-07-040200 1995-07-050200 1995-07-060200 1995-07-07 0200
~score. ‘@timestamp per 3 hours
_type ~
alert_match_name T source
Quick Count @ (500 ~ July 7th 1995, 14:55:43.000 ajert match mame: blacklisted_host record type: [Connection_alert etimestamp: July 7th 1995, 14:55:43.000
blacklisted_host aq src_i

alert_match_query: $19p-5.10.Com bytes_out: 3,080 http method: GET http_query: /shuttle/missions/

sts-71/movies/movies.htm http_status: 200 http_version: HTTP/L.0 identd: - 741f7d16-e814-4c8
4-bled-22b871da541 record_raw_value: s1ip137-3.pt.uk.ibm.net - - [07/3u1/1995:08:55:43 -0400] GET /shuttl

e/missions/sts-71/movies/movies_htm] HTTP/1.0 200 3089

record_id:

S1p137-3.pt.0

805.121,743,000

09/connection_alert/avhnGhuhrafukoaTefcx

@ @ M July 7th 1995, 14:55:43.000
aam
o
o
o
aam
aam
aam
aam
aam
aam
aam
aam -
@ @ M 7d1f7d16-e814-4cB4-bled-22bf871da541

aam

AVhN6hHhr4 fukoA7EFcx

Togisland.2016.11.09

connection_alert

src_ip:slip-5.io.com

3,089
T
/shuttle/missions/sts-71/movies/movies. htnl
200

HTTP/1.0

$1ip137-3.pt.uk.ibm.net - - [07/3ul/1995:0
1.0 200 3089

5:43 -0400] GET /shuttle/missions/sts-71/movies/movies.html HTTP/

eaam
QQaD comectionatert

805,121,743,000

T — e ——————————————————————————————

_static/kibana-logisland-metrics-packet-stream-pycapa.png
e

Selected Fields
&
Available Fields
vailable Fiel (o] L
stal 2
@tmestamp g w
_id 20
_index o
214000
_score
_type
dest_port
Time
dstip
> April 26th 2017, 21:49:00.000
olobal_magic
ip_checksum

ip_datagram_total_length
ip_flags
ip_fragment_offset
ip_idenifcation > April 26th 2017, 21:49:00.000
ip_intemet_header_length

ip_time_to_live,

ip_type_of_sevice

ip_version

LTI > April 26th 2017, 21:49:00.000
processor_name

protocol

record_errors

record_id

record_ime > April 26th 2017, 21:49:00.000
record_type

stc_ip

src_port

tep_acknowledgment_number

April 26th 2017, 21:39:08 675 - April 26th 2017,21:49:08675 — Second ¥

214100 214200 214300 214400 214500 214600 214700 214800 214900
@timestamp per second
~
_source
@timestanp: April 26th 2017, 21:49:00.000 dest_port: 5,601 dst_ip: 172.17.0.2 global magic: 725,372,255 ip_checksum: 56,334 ip_datagram_total length: 40 ip_flags: 0
ip_fragnent_offset: 0 ip_identification: 59,308 ip_internet_header_length: 20 ip time_to_live: 63 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: 6ldc4712-5741-41b7-865a-9548dFd7a8cE record time: 1,493,236,140,034 record_type: pcap_packet src_ip: 10.0.2.2 src_port: 53,545

tcp_acknouledgnent_number:

2,112,156,986 tcp_checksum: 13,994 tcp_conputed_data_length: O tcp_computed dest_ip: 172.17.0.2 tcp_computed_reassembled_length: O tcp_computed_relative

@tinestanp: April 26th 2017, 21:49:00.000 dest_port: 53,545 dst_ip: 10.0.2.2 global magic: -725,372,255 ip_checksum: 35,602 ip_datagram_total length: 45 ip_flags: 2
ip_fragnent_offset: 0 ip identification: 63,395 ip internet_header_length: 20 ip time to_live: 64 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: 4a23d64b-a7ci-4858-5F5a-5b86536697F7 record time: 1,493,236,140,033 record_type: pcap_packet src_ip: 172.17.0.2 src_port: 5,601

tcp_acknouledgnent_number: 417,417,280 tcp_checksum: 47,156 tcp_conputed_data length: 5 tcp_computed dest_ip: 10.0.2.2 tcp_computed_reassembled_length: O tcp_computed_relative ack: 0

@tinestanp: April 26th 2017, 21:49:00.000 dest_port: 5,601 dst_ip: 172.17.0.2 global magic: 725,372,255 ip_checksum: 56,329 ip_datagram_total length: 40 ip_flags: 0
ip_fragnent_offset: 0 ip identification: 59,313 ip_internet_header_length: 20 ip time_to_live: 63 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: 40b094c2-adbl-4723-9Fc5-dcbbSCISIE13 record time: 1,493,236,140,067 record_type: pcap_packet src_ip: 10.0.2.2 src_port: 53,545

tcp_acknouledgnent_number: 2,112,164,223 tcp_checksus

6,757 tcp_computed_data_length: O tcp_computed_dest ip: 172.17.0.2 tcp_computed_reassembled_length: O tcp_computed_relative

@tinestanp: April 26th 2017, 21:49:00.000 dest_port: 5,601 dst ip: 172.17.0.2 global magic: 725,372,255 ip_checksum: 55,663 ip datagram_total length: 732 ip_flags: 0
ip_fragnent_offset: 0 ip_identification: 59,287 ip_internet_header_length: 20 ip time to_live: 63 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: S0602fOb-eScS-4b22-aB42-3506c4283c36 record time: 1,493,236,140,033 record_type: pcap_packet src_ip: 10.0.2.2 src_port: 53,545

tep_acknouledgnent_number: 2,112,131,161 tcp_checksum: 32,605 tcp_computed_data length: 692 tcp_computed dest_ip: 172.17.0.2 tcp_computed_reassembled length:

0 tcp_computed_relative

_static/kibana-logisland-metrics.png
® © ® /[indexapacheLogs - Streamin: x / [Discover - Kibana X ({8 elasticsearch-head % { A\ cat: output specific number o' X | e

<« C | ® sandbox:5601/appykibanat/discover?.

refreshinterval:(display:Off,pause:!f,value:0) time:(fror

ow-15m,mode:quick to:now))&a.

ar|Ce ¥ Ga$+0

p— e 0110517201 v 1, 13217291~
e
g ..

Gtmmsirn H

-) . l .

s .

= Comatare ot

- "

e —

. o
S —
‘average_bytes per_second. - November 10th 2016, 11:08:20.000 geimestamp: November 10th 2016, 11:08:20.000 average bytes per_field: 29 average bytes per record: 148 average bytes per s

P—— 4 average_elelds por _rocord: 5 average_nua _records_per_secosds 111 coaponent_sase: Vatchauery error_percestage: O imput topics: logis]
and_aggregations nus incoaing messages: 20 nus incoming records: 20 mus outgoing_records: 2 output_topics: logisland alerts record_idi ¢
60896 1abd-46d5-a7cc-d184cA80Fd32 xecord_time: 1,478,772,500,055 rocord_types logisland setrics spack spp mame: QueryMatching

‘component_name ! N)
i, apark pactition 14: 0 tople offsst froms 180 tople offsst untili 200 total bytes: 295 total leldss 10 total processing tine in mer 1
input topics ot | s ik o /loqis1and. 2016.11.09/Toais1and necri s /AvhexykefukonTavx
numincoming messages.
num_incomig records etinestamp @Q 0 November 10th 2016, 11:08:20.000
um_outgoing records @Q @ AvhwoykesfukoaTARX
topics) Togisland.2016.12.09
rcord erors _score o
R type D Togistand_netrics
(e average bytes_per_field aam»
(D average bytes_per._record aam 1
racord type
s average bytes_per_second @am 16444
R average_fields per_record @ QM 5
o average nus_records_per_second @ @ @ 111
topi.ofsetuntl conponent._nane @ QM wachaery
tctaLyien error_percentage @amo
totailds input_topics @ Q[logisland_aggresations
totl_processing.time in.ms. nun_incoming_nessages aam o
nun_incoming_records aam
nun_outgoing_records aam?
output_topics @Qm logistland aterss
record_id @Q 0 4cadbs9s-1abd-46d5-a7ce-d18dcan0fe32
record_tine @am 1,478,772,500,055

@Q @ logisland_netrics

@Q [auerymatching

aamo
topic_offser_fron aam o
topic_offser_until aam o
ol byes aam s
total_fields aam w0

total_processing_timeinns @ Q@ 18

_static/kibana-logisland-import-dashboard.png
I settings-kibana [l dashboard_netfio. x _\

tab:dashboards)&_g=(refreshinterval:(display:'5%20seconds’paus a»\ B 9 &
8 questions/résur [} Mining Console =[] stage | Trello

< C) | ® sandbox:5601/app/kibanat/settings/objects?
Apps B hurence M logisland m stage < Spark Streaminc

Edit Saved Objects

From here you can delete saved objects, such as saved searches. You can also edit the raw data of saved objects. Typically objects are only modified via their

associated application, which is probably what you should use instead of this screen. Each tab is limited to 100 results. You can use the filter to find objects not in the

default fist.

Dashboards (1)~ Searches (1) Visualizations (14)

Dsean ([

@ dashboard netflow

showall | x

exportjson

_static/kibana-logisland-metrics-netflow.png
M Discover - kibana

x

Apache Spot (Incul x

e) e

& © C {0 | ® sandbox:5601/app/kibanat/discover?

(columns:(_source) index‘netFlow. intervalauto,query:(query stringan ¥ | Fd ® Bk

Selected Fields

Avilale Fieds [y
@timestamp
d
_index.
_type
doctets
dpkts
dstas
dst_host
dst_ mask
dstaddr
dstport
duration
frst
input
last

nexthop

Count

1000
s00
00
400
20

Apps B hurence M logisland Bm stage < Spark Streaminc [questions/résur (] Mining Console [T stage | Trello

39,726 hits

Aprl 7th 2017, 14:57:05.372 - April 7th 2017, 15:57:05.372 — by minute

i

1500 1505 1310 1515 1520 1525 1530 1535 1540 1545 1550 1535

Time.

@timestamp per minute
~

April 7th 2017, 15:56:54.000 gtimestanp: April 7th 2017, 15:56:54.000 dictets: 26,058,258 dPkts: 99,459

April 7th 2017, 15:5¢

dst_as: 0 dst_mask: 0 dstaddr: 192.168.1.101 dstport: 57,131
duration: 7,000 first: 2,732,000 input: 0 last: 2,739,000 nexthop: 0.0.
blfded42-d991-4edc-85ad-dco6T16133ac

0.0 output: 0 prot: 6 record id:

@timestamp: April 7th 2017, 15:56:54.000 doctets: 12,213,495 dPkts: 63,045
dst_as: 0 dst_host: localhost dst mask: 0 dstaddr: 127.0.0.1 dstport: 4
2,506 duration: © first: 2,720,000 input: © last: 2,720,000 nexthop: 0.
0.0.0 output: 0 prot: 6 record id: 4b54cabb-38c1-41c1-9cdf-bdadeb7ca7bf

_static/kibana-threshold-alerts.png
©® O ® /[queryMatching - Streaming & x / []] Kibana X ({8 elasticsearch-head

refreshinterval:

isplay:Off, pause

€& C | ® sandbox:5601/app/kibana?#/discover

kibana ~ = == = U —
record_type:threshold_alert 5 0 5 o

fvalue:0) time: (from:'1995-06-29T22:00:00.000Z'mod... % | [€ @ % & & + O

p—— e 50050704y 5500005080 iz
L <
. ;
Available Fields
a..
J—— 3
i
. ‘ [1 1 I, |
e .
Jcom ‘@timestamp per 3 hours
type ~
s e - e
Quick Count @ (13 v July 6th 1995, 00:24:30.000 record type: ‘threshold_alert etimestamp: July 6th 1995, 00:24:30.000 alert match mame: too_many_connecti
to0_many_connections eq ons alert_match_guery: connections_count:([500 TO 1000000] avg_bytes_out: 20,773.002 conmections_count: 60

G) 4 rocord_id: beSZOS0-0325-452C-0506-50CO2362402 record_tine: 804,983,070,000 sre_ip: pinebady.prodigy.
Visualize (1 warning &) om _id: AVANGfgOr4fukOAZEYT_ _type: threshold_alert _index: logisland.2016.11.09 _score:

alert_match_query

avg_bytes_out Link to /logisland.2016.11.09/threshold_alert/AVhN6fq0r4fukoATEvT.
- Table Isow

‘connections_count

) atimestamp @ @ m July 6th 1995, 00:24:30.000
gD _id @ @ D AVANGFgOr4fukoaZEvT_
D _index @ logisland.2016.11.09
src_ip _score o

—type @ threshold_alert

alert_match_name @ Q (D too_many_connections
alert_match_query @ @ [connections_count:[500 To 1000000]
avgbytesout @ @ D 20,773.002

connections_count @ @ @ 604

record_id @ @ M bde92060-d325-492-9506-5dc92362402b.
record_time @ @ m 804,983,070,000

record_type @ Q@ [[threshold_alert

srcip @ @ M piwebaly.prodigy.con

» July 6th 1995, 00:13:45.000

€0597747-3Ff2-4ef0-0609-3e50ee46ac0a record_time: 804,982,425,000 src_ip: news.ti.com
_id: AVANGTQOr4fukOA7EYUA _type: threshold_alert _index: logisland.2016.11.09 _score:

_static/kibana-match-queries.png
‘ ® ©® ® /A kibana x (m localhost:9200logisl- x (() How to get bash or s< x ! [f[f] Tutorials —logisland = x (() Logisland v0.10.2 tut x { - stackoverflow.com x B Alerting & Query Matc x * Thomas

& C' | @ localhost:5601/app/kibana#/discover?_g=(refreshinterval:(display:Off,pause:!f,value:0),time:(from:'1995-06-20T01:0... ¥ @ P O\ ¥ ~ O L9 :
[x]
i Apps 19 Grafana & Webmail [4 Kibana @\ Ambari- hurence [Yarn - hurence @ ES - hurence #) sd-79372.dedibox.f... [l Resource Allocation... [) Raspberry Pi Music.. @' appear.in - one clic... »
413 hits New Save Open Share Reporting
alert_match_name:* n
Discover logisland* @ _source
Visualize Selected Fields » @timestamp: July 2nd 1995, 01:15:54.000 alert match name: blacklisted_host alert match query: src_ip:(+alyssa +prodigy) bytes_out: 5
D TR 8868 http_method: GET http_query: /shuttle/countdown/video/1ivevideo.gif http status: 200 http_version: HTTP/1.0 identd: -
Dashboard record_id: 6e8aa32a-1d4c-40f5-a385-809e42c8c232 record raw value: alyssa.prodigy.com - - [01/3u1/1995:19:15:54 -0400] "GET /shuttle/co
Timelion Available Fields n untdown/video/Tivevideo.gif HTTP/1.0" 200 58868 record_time: 804,640,554,000 record_type: apache_log src_ip: alyssa.prodigy.com
Popular user: - _id: 6e8aa32a-1d4c-40f5-a385-809e42c8c232 _type: apache_log _index: logisland.2017.10.17 _score: -
Machine Learning
£ srcip » @timestamp: July 2nd 1995, 01:15:33.000 alert match_name: blacklisted_host alert_match_query: src_ip:(+alyssa +prodigy) bytes_out: 7
(it © @timestamp 074 http_method: GET http_query: / http_status: 200 http_version: HTTP/1.0 identd: - record_id: 48b4db62-749b-4400-aceb-7c957ele6
Dev Tools t _id 070 record_raw_value: alyssa.prodigy.com - - [01/3Ju1/1995:19:15:33 -0400] "GET / HTTP/1.0" 200 7074 record_time: 804,640,533,000
NG record_type: apache_log src_ip: alyssa.prodigy.com user: - _id: 48b4db62-749b-4400-aceb-7c957e1e6070 _type: apache_log _index: 1o
Monitoring gisland.2017.10.17 _score: -
_score -
japasement t _type » @timestamp: July 2nd 1995, 01:14:53.000 alert match_name: blacklisted_host alert_match_query: src_ip:(+alyssa +prodigy) bytes_out: 5
9703 http_method: GET http_query: /shuttle/countdown/video/livevideo.gif http_status: 200 http_version: HTTP/1.0 identd: -
Quick € ‘0 record_id: d6ealbbe-68d5-4cfe-baab-7d1c497e82e7 record_raw _value: alyssa.prodigy.com - - [01/3u1/1995:19:14:53 -0400] "GET /shuttle/co
uic oun
(413 /413 records) untdown/video/Tivevideo.gif HTTP/1.0" 200 59703 record_time: 804,640,493,000 record_type: apache_log src_ip: alyssa.prodigy.com
user: - _id: d6eal6be-68d5-4cfe-baab-7d1c497e82e7 _type: apache_log _index: logisland.2017.10.17 _score: -
blacklisted_host Qe
aa » @timestamp: July 2nd 1995, 01:14:42.000 alert match_name: blacklisted_host alert_match_query: src_ip:(+alyssa +prodigy) bytes_out: 4
montana_host
538 http_method: GET http_query: /shuttle/countdown/Tiftoff.html http_status: 200 http_version: HTTP/1.0 identd: - record_id: 54f
15cdd-f7el-4dc4-92ee-18019387d916 record raw_value: alyssa.prodigy.com - - [01/Ju1/1995:19:14:42 -0400] "GET /shuttle/countdown/1iftof
t alert_match_que|
N Ky f.html HTTP/1.0" 200 4538 record time: 804,640,482,000 record type: apache_log src_ip: alyssa.prodigy.com user: - _id: 54f15cdd-f7

¢ bytes_out el-4dc4-92ee-18019387d916 _type: apache_log _index: Tlogisland.2017.10.17 _score: -

t http_method
¢ http_query » @timestamp: July 2nd 1995, 01:08:36.000 alert match_name: blacklisted_host alert_match query: src_ip:(+alyssa +prodigy) bytes_out: 1
¢ http_status 932 http_method: GET http_query: /shuttle/resources/orbiters/orbiters-logo.gif http_status: 200 http_version: HTTP/1.0 identd: -

o b . record_id: 2ef91f48-218d-4212-a3b4-ee036cde807e record_raw_value: alyssa.prodigy.com - - [01/3Ju1/1995:19:08:36 -0400] "GET /shuttle/re
p_version

sources/orbiters/orbiters-logo.gif HTTP/1.0" 200 1932 record time: 804,640,116,000 record type: apache_log src_ip: alyssa.prodigy.co
© Collapse t identd

_static/kibana-save-search.png
/ M Discover - Kibana

Selected Fields

@timestamp
d

_index
_type
doctets
dpkts
dstas
dst_host

dstioa

Available Fields. (o]

x \ G curlelasticsearch ¢ x) Index templatenc' x \ 2 elasticsearch-Hov x Y & database-Elastics

x \

Count

‘April 11th 2017,09:52:09.529 - Aprl 12th 2017, 09:52:09.529 — by 30 minutes

2500
2000
1500
1000
500
o
1100 1400 1700 2000 200 0200
@timestamp per 30 minutes
~
Time. _source:

27.000 doctets: 3,363,716

April 1ith 2017, 18:06:27.008 gtimestamp: April 11th 2017, 18

<« C) | ® sandbox:5601/app/kibanat/discover?_g=(filters:(),refreshinterval:(display:’5%20seconds’ pause:1F.section:1value:5000) time @ v | A ® B
Apps B hurence M logisland Wm stage <Y Spark Streaminc M questions/résur [} Mining Console | [I stage | Trello

o500

dPkts: 11,599 dst e

2,582 hits

o800

dst_ipd: 192.168.1.102 dst_mask: © dst_port: 35,002 duration: 54,000 first: 121,000 flags: 2
22 dmput: © last: 175,000 nexthop: ©.0.0.0 nmprot: 6 output: © record id: 632cedaa-8d4s-4dfi-

_static/kibana-logisland-aggregates-events.png
‘ ® ©® ® /A kibana x { = localhost:9200/logisland.201~ x ¢ [f[f] Tutorials —logisland 0.10.0-1 x) Logisland v0.10.2 tutorials do- x B Tutorials — logisland 0.10.2 ¢ x " Thomas

& © ‘(DIocalhost:5601/app/kibana#/visualize/create?type:metrics&_g:(refreshlntervaI:(display:Off,pause:!f,value:O),time:(fro... \i‘(‘ e TO0ORBFL0DHO X o = @
i Apps 19 Grafana &) Webmail [4 Kibana @\ Ambari- hurence [] Yarn - hurence @ ES - hurence #) sd-79372.dedibox.f... [J] Resource Allocation... [Z] Raspberry Pi Music... @' appear.in - one clic... »

Visualize / New Visuallization (unsaveaq) Save Snare Retresn Reportung <€ W July 1St 1995, U3:34:40.34/ 10O JUly £Nd 1995, UZ125115.983

kibana

Time Series Metric TopN Gauge Markdown

Discover

80,000
Visualize > @ Average of avg_by 67,657.94

Jul 1, 1995 6:00 PM
Dashboard T
Timelion
Machine Learning
Graph
Dev Tools
Monitoring

Panel Options Annotations
Management

v . Label

Metrics Options
@ Aggregation Field

Average avg_bytes_out

Group By Everything
Everything
Filter
Filters

Q Collapse Terms

_static/kibana-logisland-dashboard.png
/ Wl dashboard_netflo. x \{__\

& © C 0 | ® sandbox:5601/app/kibanatt/dashboard/dashboard_netFlow?_g=(refreshinterval(display:’5%20seconds’ pause:f section:1 value:5000) time:(From:2017-04-05T12:12:13.317Z mode:absoluteto:2017-04-05T1 @ % | H & B
Apps B hurence M logisland Wm stage <Y Spark Streaminc M questions/résur [} Mining Console | [I stage | Trello
ot e of Neow vent ,x Incorin ven e rtcl ’x
= ot Descendig - Q0 Count B
181,379 ;
9 . soess
= = >
Tops s Tops =i Nomber of Pckesper s prt (09 20 ,x
Top st port ’x Top 5t ,x NomberofPckes pr st port 1020 ,x
- () E IIIIII IIIIIIIIIII
Incomin flow pr P o 5) ,x
o e
incomin fon ,x

_static/kibana-jms-records.png
K kibana

Discover
Visualize
Dashboard
Timelion

Machine Learning

Graph

Dev Tools

Monitoring

Management

2 hits
Search...
logisland*
Selected Fields
? _source
Available Fields

© @timestamp
t _id

t _index

_score

t _type

t correlation_id
t destination

t message_id
t message_text
mode

priority

t record_id

record_time

t record_type

O redelivered

t type

Count

(]

23:59:00

Time

v August 24th 2018, 00:12:24.000

Table JSON

+ % O+ W W O+ &+ &+ o+ o+ W+ o+ O

@timestamp
_id

_index

_score

_type
correlation_id
destination
message_id
message_text
mode

priority
record_id

record_time

record_type

QQm*
QQam*
QQam*
QQam*
QQam*
QQm*
QQm*
QQm*
QQm*
QQm*
QQm*
QQm*
QQm*
QQm*

00:00:00

New Save Open Share Reporting <€ O Last15minutes >
August 23rd 2018, 23:57:41.878 - August 24th 2018, 00:12:41.878 — Auto 4
o
00:01:00 00:02:00 00:03:00 00:04:00 00:05:00 00:06:00 00:07:00 00:08:00 00:09:00 00:10:00 00:11:00 00:12:00
@timestamp per 30 seconds
_source

@timestamp: August 24th 2018, 00:12:24.000 correlation_id: destination: queue://test-queue message_id: ID:lo
calhost-60660-1534975316018-4:6:1:1:2 message_text: Hello Logisland from JMS! mode: 1 priority: @ record id:

4965ac08-ed13-493f-9e39-45067fe06f78 record_time: 1,535,062,344,561 record type: kafka_connect redelivered: fal
se type: _id: 4965ac08-ed13-493f-9e39-45067fe@6f78 _type: kafka_connect _index: logisland.2018.08.23

_score: -

View surrounding documents View single document

August 24th 2018, 00:12:24.000
4965ac08-ed13-493f-9e39-45067fe0678
logisland.2018.08.23

kafka_connect

queue://test-queue
ID:localhost-60660-1534975316018-4:6:1:1:2
Hello Logisland from JMS!

1

0

4965ac08-ed13-493f-9e39-45067fe0678
1,535,062,344,561

kafka_connect

_images/activemq-create-queue.png
iveMQ

Home | Queues | Topics | Subscribers | Connections | Network | Scheduled | Send

Queue Name Create Queue Name Filter Filter

Queues:

Name Number Of Pending Messages Number Of Consumers Messages Enqueued Messages Dequeued Views Operations

Browse Active Consumers
test-queue 1 0 14 13 Active Producers Send To Purge Delete

_images/activemq-send-message.png
ActiveM0

Home | Queues | Topics | Subscribers | Connections | Network | Scheduled | Send

Send a JMS Message

Message Header

Destination test-queue Queue or Topic

Correlation ID Persistent Delivery o
Reply To Priority
Type Time to live
Message Group Message Group Sequence Number
delay(ms) Time(ms) to wait before scheduling again
Number of repeats Use a CRON string for scheduling
Number of messages to send 1 Header to store the counter JMSXMessageCounter
Send Reset
Message body

Enter some text here for the message body...

_images/data-driven-computing.png
Log Parser/

System Monitoring/
b """ Actions

Anomaly Fault Problem
Detection Diagnosis Determination

I
! ==
Real Time Management I [oy
_____________________ I Correlation/Dependency
Knowledge

torical Knowledge Management
E"‘ Collection | == i

N — T
- [EOtfine Analysiss S=Ses S S |

_images/kafka-mgr.png
+ Brokers

Host

sandbox

9092

JMX Port

10101

Bytes In

Bytes Out

Combined Metrics

Rate
Messages in /sec

Bytes in /sec

Bytes out /sec

Bytes rejected /sec
Failed fetch request /sec

Failed produce request /sec

eeo00He
66666
86600

1min

5min

15 min

666008

nav.xhtml

 Table of Contents

 		
 Welcome to logisland’s documentation!

 		
 Introduction

 		
 Core concepts

 		
 What is a pattern ?

 		
 From raw to structure

 		
 Event pattern mining

 		
 Architecture

 		
 Data driven architecture

 		
 Technical design

 		
 User Documentation

 		
 Components

 		
 Engines Documentation

 		
 Common-processors

 		
 Other-processors

 		
 Services

 		
 Dynamic properties

 		
 Overview

 		
 Structure of a dynamic properties

 		
 Usage of a dynamic properties

 		
 Conclusion

 		
 Expression Language

 		
 Overview

 		
 Structure of a Logisland Expression

 		
 Usage of a Logisland Expression

 		
 Conclusion

 		
 Developer Documentation

 		
 Developer Guide

 		
 Workflows

 		
 Build the code and run the tests

 		
 Prerequisites

 		
 Building

 		
 Release to maven repositories

 		
 Publish release assets to github

 		
 Publish Docker image

 		
 Publish artifact to github

 		
 Components

 		
 Processors

 		
 Services

 		
 Connectors

 		
 Streams

 		
 Engines

 		
 Object Model

 		
 Record

 		
 PropertyDescriptors

 		
 ProcessContext

 		
 ControllerServiceInitializationContext

 		
 Documentation

 		
 Documentation Guide

 		
 Plugins

 		
 What’s a plugin?

 		
 How a plugin is packaged

 		
 How about naming?

 		
 Getting started

 		
 List all components

 		
 Install a component

 		
 Remove a component

 		
 Which module contains my component?

 		
 How about the distribution?

 		
 Connectors

 		
 Introduction

 		
 Prerequisites

 		
 Getting started

 		
 Configuring

 		
 Choosing the right converter

 		
 Putting all together

 		
 Going further

 		
 Tutorials

 		
 Prerequisites

 		
 1. Trough a Docker container (testing way)

 		
 2. Through an Hadoop cluster (production way)

 		
 Apache logs indexing

 		
 Apache logs indexing with elasticsearch

 		
 1.Install required components

 		
 2. Logisland job setup

 		
 3. Launch the job

 		
 4. Inject some Apache logs into the system

 		
 5. Monitor your spark jobs and Kafka topics

 		
 6. Inspect the logs

 		
 3. Stop the job

 		
 Apache logs indexing with mongo

 		
 1.Install required components

 		
 2. Logisland job setup

 		
 3. Launch the job

 		
 4. Inject some Apache logs into the system

 		
 5. Monitor your spark jobs and Kafka topics

 		
 6. Inspect the logs

 		
 3. Stop the job

 		
 Apache logs indexing with solr

 		
 1.Install required components

 		
 2. Logisland job setup

 		
 3. Launch the job

 		
 4. Inject some Apache logs into the system

 		
 5. Monitor your spark jobs and Kafka topics

 		
 6. Inspect the logs

 		
 3. Stop the job

 		
 Store Apache logs to Redis K/V store

 		
 1. Logisland job setup

 		
 2. Launch the script

 		
 3. Inject some Apache logs into the system

 		
 4. Inspect the logs

 		
 Threshold based alerting on Apache logs with Redis K/V store

 		
 1. Controller service part

 		
 2. First stream : parse logs and compute tags

 		
 3. Second stream : check threshold cross and alerting

 		
 4. Launch the script

 		
 5. Inject some Apache logs into the system

 		
 6. Inspect the logs and alerts

 		
 Alerting & Query Matching

 		
 1.Install required components

 		
 2. Logisland job setup

 		
 3. Launch the script

 		
 4. Inject some Apache logs into the system

 		
 5. Check your alerts with Kibana

 		
 Event aggregation

 		
 1.Install required components

 		
 2. Logisland job setup

 		
 3. Launch the script

 		
 4. Inject some Apache logs into the system

 		
 5. Check your alerts with Kibana

 		
 Index Apache logs Enrichment

 		
 1. Start LogIsland as a Docker container

 		
 2. Inject some Apache logs into the system

 		
 3. Monitor your spark jobs and Kafka topics

 		
 4. Use Kibana to inspect the logs

 		
 Time series sampling & Outliers detection

 		
 1. Setup the time series collection Stream

 		
 2. Setup the Outliers detection Stream

 		
 3. Setup the time series Sampling Stream

 		
 4. Setup the indexing Stream

 		
 4. Start logisland application

 		
 5. Check your alerts with Kibana

 		
 Bro/Logisland integration - Indexing Bro events

 		
 Bro and Logisland

 		
 Tutorial environment

 		
 1. Start the Docker container with LogIsland

 		
 2.Install required components

 		
 3. Transform Bro events into Logisland records

 		
 4. Start the Docker container with Bro

 		
 5. Configure Bro to send events to Kafka

 		
 6. Generate some Bro events and notices

 		
 Netflow/Logisland integration - Handling Netflow traffic

 		
 Netflow and Logisland

 		
 Tutorial environment

 		
 1. Start LogIsland as a Docker container

 		
 2. Configuration steps

 		
 3. Parse Netflow records

 		
 4. Inject Netflow events into the system

 		
 5. Monitor your spark jobs and Kafka topics

 		
 6. Use Kibana to inspect events

 		
 Capturing Network packets in Logisland

 		
 1. Network Packets

 		
 2. Tutorial environment

 		
 3. Start LogIsland as a Docker container

 		
 4. Parse Network Packets

 		
 5. Stream network packets into the system

 		
 6. Monitor your spark jobs and Kafka topics

 		
 7. Use Kibana to inspect records

 		
 Generate Unique Ids

 		
 Stream 1 : parse incoming apache log lines

 		
 Index JMS messages

 		
 1. Installing ActiveMQ

 		
 2. Logisland job setup

 		
 3. Launch the script

 		
 4. Do some insights and visualizations

 		
 5. Monitor your spark jobs and Kafka topics

 		
 Index blockchain transactions

 		
 1. Logisland job setup

 		
 2. Launch the script

 		
 3. Do some insights and visualizations

 		
 4. Monitor your spark jobs and Kafka topics

 		
 Extract Records from Excel File

 		
 1.Install required components

 		
 2. Logisland job setup

 		
 3. Launch the script

 		
 4. Inject an excel file into the system

 		
 5. Inspect the logs

 		
 IIoT with MQTT and Logisland Data-Historian

 		
 1. Logisland job setup

 		
 2. Launch the script

 		
 3. Inject some Apache logs into the system

 		
 4. Monitor your spark jobs and Kafka topics

 		
 5. Inspect the logs

 		
 IIoT with OPC and Logisland

 		
 1.Install required components

 		
 2. Logisland job setup

 		
 3. Launch the script

 		
 4. Inspect the records

 		
 Integrate Kafka Connect Sources & Sinks

 		
 1. Logisland job setup

 		
 2. Launch the script

 		
 3. Examine your console output

 		
 4. Monitor your spark jobs and Kafka topics

 		
 Index JDBC messages

 		
 1.Install required components

 		
 2. Installing H2 datatabase

 		
 3. Logisland job setup

 		
 4. Launch the script

 		
 API design

 		
 Java API

 		
 The primary material : Records

 		
 The tools to handle processing : Processor

 		
 Transverse service injection : ControllerService

 		
 Chaining processors in a stream : RecordStream

 		
 Running the processor’s flow : Engine

 		
 Testing your processors : TestRunner

 		
 Logisland REST API

 		
 Introduction

 		
 Usage

 		
 API Specification

 		
 Operations

 		
 Data Structures

 		
 What’s new in logisland ?

 		
 v1.1.1

 		
 v1.0.0

 		
 v0.14.0

 		
 v0.10.0

 		
 v0.9.8

 		
 v0.9.7

 		
 v0.9.6

 		
 v0.9.5

 		
 Frequently Asked Questions.

 		
 I already use ELK, why would I need to use LogIsland ?

 		
 Do I need Hadoop to play with LogIsland ?

 		
 How do I make it scale ?

 		
 What’s the difference between Apache NIFI and LogIsland ?

 		
 Error : realpath not found

 		
 How to deploy LogIsland as a Single node Docker container

 		
 How to deploy LogIsland in an Hadoop cluster ?

 		
 How can I configure Kafka to avoid irrecoverable exceptions ?

 		
 How to purge a Kafka queue ?

_images/kibana-blockchain-dashboard.png
Dashboard / Main Dashboard Share Edit Reporting < @ April 9th 2018, 09:14:03.028 to April 9th 2018, 09:18:40.297

Re
4

Filter...

Metrics Most Frequent Addresses

The container is too small to display the entire cloud. Tags might be cropped or omitted.

12B5LnSBedsTGUCaYIbTWSudDRKPaVUPH 1266irfBC52)IDVKWASIGGQNidsihLiNpo
S 13LXepHGTBYGNQFNWvilLaeAGMeeSuBAVE

08 039 247 833 TFeexV6hAHL8YLZinQMjlrcCrHGWIsh6uF

34roKKPLOTHGU2PuT12tD69G6ZkensviVeK

315,257,221.382

Transactions

@ Tx Value (Satoshi)
100,000,000,000

80,000,000,000

60,000,000,000

Tx Value (Satoshi)

40,000,000,000

20,000,000,000

09:14:30 09:15:00 09:15:30 09:16:00 09:16:30 09:17:00 09:17:30 09:18:00 09:18:30

@timestamp per 5 seconds

_images/kibana-blockchain-records.png
Discover
Visualize
Dashboard
Timelion

Machine Learning

Graph

Dev Tools

Monitoring

Management

444 hits
Search...

logisland.*
Selected Fields
? _source
Available Fields

© @timestamp
t _id

t _index

_score

t _type

t hash

7 inputs

lock_time

7 out

t record_id
record_time
t record_type
t relayed_by
size

time

tx_index

ver

vin_sz

vout_sz

New Save Open Share Reporting < O Last 15 minutes

(<] April 9th 2018, 09:10:06.666 - April 9th 2018, 09:25:06.667 — Auto 4
€
60
€ 40
=1
o
o
20
0
09:11:00 09:12:00 09:13:00 09:14:00 09:15:00 09:16:00 09:17:00 09:18:00 09:19:00 09:20:00 09:21:00 09:22:00 09:23:00 09:24:00
[A) @timestamp per 30 seconds
Time « _source

v April 9th 2018, 09:18:15.000 @timestamp: April 9th 2018, ©9:18:15.000 hash: ce45af75054883011802e7fe72e91dc6b3458df6bfcd0af6106fc89aada8270b inputs: { "sequenc
e": 4294967294, "prev_out": { "addr_tag_link": null, "addr_tag": null, "spent": true, "tx_index": 340816748, "type": @, "addr": "1EKN)
GfjkQy8ZaKDifWxceohKUYgjXwkox", "value": 20276, "n": 412, "script": "76a9149213168c43d12a28b3c4beb680d64946be83e97388ac" }, "script":
"483045022100b19a3597c5f5d5d8fela2d73236583a7f4b1051b6b319429edfd4aba366a39b0220336f8db67b@50b11dcb76bd767fed33823d35905dcc4a@9f@bfb?
2c6bd41e7e0012102f5550029e91e273862e8b892a71ae3ae6b26a50ab93664f6b6494b96060c369b" }, { "sequence": 4294967294, "prev_out": { "addr_tc

Table JSON View surrounding documents View single documen

© @timestamp @ Q@ @M % April 9th 2018, 09:18:15.000

t _id @ @ @ * aebl9bde-0c07-4a30-b67c-17edad5151cc
t _index @ @ @ # logisland.2018.04.08
_score Qad*x -
t _type @ @ @ * kafka_connect
t hash @ Q [@ % ce45af75054883011802e7fe72e91dcb6b3458df6bfcd0af6106fc89aada8270b
7 inputs @ om*k A
{

"sequence": 4294967294,
"prev_out": {
"addr_tag_link": null,
"addr_tag": null,
"spent": true,
"tx_index": 340816748,
"type": 0,
"addr": "1EKNXGfjkQy8ZaKDifWxceohKUYgjXwkox",
"value": 20276,

_images/kibana-apache-logs.png
® © ® /[y indexapacheLogs - Streamin: x / [Discover - Kibana X ({8 elasticsearch-head x { /) cat: output specific number o' x |\ e

Y

¢ — C @ sandbox:5601/app/kibanat/discover? ¢

refreshinterval:(display:Off,pause:!fyalue:0) time:(from:'1995-06-29T22:00:00.000Z,mo.. A % | [€ @ % @& ¥ + O

CAutorirosh @) June 30t 1995, 0000:00.000 o Jul 8 1995, 0000:00.000.

e o e
e J msaron [|

E - o e

o o e Wt T 7 S e T e

[-

B - |

W mom s a e e

. LRIy

-

‘Seacted ks une 3001995, 0D0D0.000 -l 8 1995, 0000000 — by s
o0 <
Avalabe Fiids o
- = I I II I I II
i
K 5000
= . Lualllllaallllial (TR T Ll
e @timestamp per 3 hours
e .
e
Time _sourcs
it mathod
e > Wy 7th 1995, 14:55:52.000 getmestamps July 7th 1995, 14:55:52.000 Bytes_osts 7,067 Betp sethods GET betp_querys /ksc.hesl Betp statuss 200 besp versions HTTP/L.0
. Ldoatds - xecomd_ids 9afa42f5-0bBE-sesd-b3bS-F2dchaBIBab2 record _cew_valve: 130.103.8.217 - - [07/241/1995:08:55:52 -0400) Ger /ksc.he) w7
. vrsion P/1.0/200 7067 cocord_tines 805,121,752,000 secord_types spache_log sxc_ips 130.103.48.217 wsers - _ids AVBNvsnr4fukONTASIO _types apache_
» log _sadex: logisland 2016.11.09 _score:
) 0g og E
ecors s
> uly 7th 1995, 14i55552.000 getmestampr July 7eh 1995, 16:55:52.000 bytes_outs 5,866 heep methods GET heep querys /inages/ksclogo-sedium.gif hetp_statuss 200
acor ra v
= Bttp version: WITP/LO identds - record id: 36hG982-F533-40fb-b106-03FEChS22909 xecord ca_values spider.the.com - - (07/3u1/1995:08:55:52 -
T 0400) GeT /inages/ksclogo-ediun. 1 HTTP/1.0 200 5366 secord_times 805,121,752,000 record_trpes apache_log src_ips spider.the.con useri -
ecord type 41 AVANEVSQrAFUKOATATKE _trpes apache_Tog _tadexs logisland.2016.11.09 _seores
sreip
user » Wy 7th 1955, 14:55:51.000 getmestamps July 7h 1995, 14:55:51.000 Bytes_outs 3,047 betp methods GET besp_querys /history/apollo/inages/apollo-Togo.gif betp_statuss 20

© hetp_verstons WITP/LO ideneds - record.

© 1c753eda-beea-4773-9bfb-a5369be73441 record_rew_valua: ad03-025. conpuserve.con - - [07/1/199
5:08:55:51 -0400) GeT /history/apollo/inages/apollo-Togo.gi HTTP/1.0 200 3047 record_tise: 805,121,751,000 secord_types apache_log sre_ips ad

03:025.conpuserve.con waers - _{ds AVANEVSQréfukOATATKS _type: apache_log isdess logisland.2016.11.09 _scorer

> 3uly 7th 1985, 14:55i50.000 getmestamps July 7th 1995, 14:55:50.000 byses outs 7,067 heep methods GET hetp querys /ksc.himl heep statuss 200 heep version: WITP/LO

identar - racora La: 496B07S-3b1-46fb-930b-78ee604SSF18 record_rau_value: spider. the.con - - (07/3u1/1995:08:55:50 0400) GET /ksc.hex] HIT
P/1.0 200 7067 rocord_tine: 805,121,750,000 record type: apachelog scc_ips spider.the.com wsers - _ids AVANIngrfukORTAWFH _type: apache_
Tog _tadex: logis1and.2016.11.09 _score:

> 3uly 7th 1985, 14:55:49.000 geimestamps July 7th 1995, 14:55:49.000 byses_outs 40,310 heep methods GET hewp querys /shutle/countdown/count.gif heep_statuss 200
http veraion: HTTP/1.0 dsmtds - record ids ccfacdB0-1162-4F0c-99ef-d31F6S93728 record_raw_valus: gate.chips.ibm.con - - [07/3u1/1995:08:55:
49 -0400] GT /shuttle/countdown/count..giF HTTP/1.0 200 40310 record_tines B05,121,749,000 record type: apachelog see_ips gate.chips. ibm.con
users - _id: AVNGOIZr4fUkOATAYGQ _type: apache log _index: logisland.2016.11.09 _score:

_images/kibana-blacklisted-host.png
® ©® /[querymatching - Streaming < x /|| Kibana

X ({8 elasticsearch-head e

X\

@

C | ® sandbox:5601/app/kibana?#/discover

isplay:Off,pause:!f,value:0),time:(from:'1995-06-29722:00:00.000Z'mod. a‘ Cew Ga$+0

alert_match_name: “blackiisted_host” JEV-CUNS

Visualize (1 warning A

alert_match_query
bytes_out
hitp.method Table Jso
itp_cpiery Gtinestanp
hitp_status, i
http,version index
identd

_score
record_ertors.

—type
record_id

alert_match_name
record_raw_value

alert_match_query
record_time

bytes_out
record_type

http_nethod
src_ip

http_query
user

hetp_status

http_version
identd
record_id

record_raw_value

record_time

record_type

13,233 hits

Selected Fields June 30th 1995, 00:00:00.000 - July Bth 1995, 00:00:00.000 — by 3 hours.
600 <
Available Fields n ¢ o
@timestamp 3
8
20
. I I ||“ ih |“ Lanllh..ult
o R | | | '] n Al n 1]]
199507010200 199507020200 199507030200 1995-07-040200 1995-07-050200 1995-07-060200 1995-07-07 0200
~score. ‘@timestamp per 3 hours
_type ~
alert_match_name T source
Quick Count @ (500 ~ July 7th 1995, 14:55:43.000 ajert match mame: blacklisted_host record type: [Connection_alert etimestamp: July 7th 1995, 14:55:43.000
blacklisted_host aq src_i

alert_match_query: $19p-5.10.Com bytes_out: 3,080 http method: GET http_query: /shuttle/missions/

sts-71/movies/movies.htm http_status: 200 http_version: HTTP/L.0 identd: - 741f7d16-e814-4c8
4-bled-22b871da541 record_raw_value: s1ip137-3.pt.uk.ibm.net - - [07/3u1/1995:08:55:43 -0400] GET /shuttl

e/missions/sts-71/movies/movies_htm] HTTP/1.0 200 3089

record_id:

S1p137-3.pt.0

805.121,743,000

09/connection_alert/avhnGhuhrafukoaTefcx

@ @ M July 7th 1995, 14:55:43.000
aam
o
o
o
aam
aam
aam
aam
aam
aam
aam
aam -
@ @ M 7d1f7d16-e814-4cB4-bled-22bf871da541

aam

AVhN6hHhr4 fukoA7EFcx

Togisland.2016.11.09

connection_alert

src_ip:slip-5.io.com

3,089
T
/shuttle/missions/sts-71/movies/movies. htnl
200

HTTP/1.0

$1ip137-3.pt.uk.ibm.net - - [07/3ul/1995:0
1.0 200 3089

5:43 -0400] GET /shuttle/missions/sts-71/movies/movies.html HTTP/

eaam
QQaD comectionatert

805,121,743,000

T — e ——————————————————————————————

_images/kibana-configure-index.png
e

©® O ® /[indexapacheLogs - Streamine x / [1] Settings - Kibana X ({8 elasticsearch-head % /) cat: output specific number o' x |\
:Off, pause:tfvalue:0) time:(from:now-15m, mode:quick to:now)) tEew Qo $+0

' RegEx Quick Refere... @ Improved Fault-tole... & NiFi [Partitions and Parti.. [} Kafka Consumer Of... #) Ambari - hurence [} Yar - hurence & ES - hurence »

€ C | ® sandbox:5601/appkibana#/settings/indices/?.

3 Pragmatic Program... Iy Getting started wit..

Apps [E] USI) Lambda-Acch.

kibana ~ --

Indices Advanced Objects Status About

Index Patterns

e Gonfigure an index pattern

In order to use Kibana you must configure at least one index pattern. Index patterns are used to identify the Elasticsearch index to run search and analytics against. They are also used to configure fields.

index contains time-based events
7] Use event times to create index names [DEPRECATED]

Index name or pattern
Patterns allow you to define dynamic index names using * as a wildcard. Exampl

logisland.{

Do not expand index pattern when searching (Not recommended)
By default, searches against any time-based index pattern that contains a wildcard will automatically be expanded to query only the indices that contain data within the currently selected time range.
Searching against the index pattern logstash-* will actually query elasticsearch for the specific matching indices (e.g. logstash-2015.12.21) that fall within the current time range.

Time-field name @ refresh fields

@timestamp

_images/kibana-excel-logs.png
kibana

Discover
Visualize
Dashboard
Timelion

Machine Learning
Graph

Dev Tools
Monitoring

Management

Welcome to X-Pack!

Sharing your cluster statistics with us helps us improve. Your data is never shared with anyone. Not interested? Opt out here.

700 hits

New Save Open Share Reporting £ @ Last5 years

Bearch...

logisland*
Selected Fields
? _source
Available Fields

© @timestamp
t _id

t _index

_score

t _type

cogs

t country

t discount_band
discounts

gross_sales

manufacturing
t month_name
month_number
t product

profit

2014-01-01

®

Time

» December 1st 2014, 00:00:00.000

» December 1st 2014, 00:00:00.000

March 14th 2013, 23:23:18.967 - March 14th 2018, 23:23:18.967 — Auto s

2015-01-01 2016-01-01 2017-01-01

@timestamp per month

_source

@timestamp: December 1st 2014, 00:00:00.000 cogs: 3,165 country: France
discount_band: Low discounts: 253.2 gross_sales: 12,660 manufacturing:
10 month_name: December month_number: 12 product: Paseo profit: 9,241.8
record_id: 487d5dfb-1lcdl-45ed-b3db-645047ec906f record_time: 1,417,388,40

0,000 record type: excel sale_price: 12 sales: 12,406.8 segment: Channe

@timestamp: December 1st 2014, 00:00:00.000 cogs: 3,252 country: Mexico
discount_band: Low discounts: 260.16 gross_sales: 13,008
manufacturing: 10 month name: December month number: 12 product: Paseo
profit: 9,495.84 record_id: 016f53al-eccd-4472-973c-e18222794fe2
record_time: 1,417,388,400,000 record type: excel sale price: 12

>

_images/kibana-configure-index-netflow.png
|/ Ml settings-kibana x ([ApacheSpot (incul. x \\

<« C () | ® sandbox:5601/app/kibana#/settings/indices/?_g=(refreshinterval:(display:'5%20seconds’pause:it,section:1value:s ¥ | [@ Bk

Apps B hurence M logisland Wm stage <7 Spark Streaminc M questions/résur [} Mining Console | [I stage | Trello

Index Patterns

et Configure an index pattern

patter. You must select or

create one fo confinue. In order to use Kibana you must configure at least one index pattern. Index patterns are used to identify the Elasticsearch index to run search

‘and analytics against. They are also used to configure fields.

9l Index contains time-based events

) Use event times to create index names [DEPRECATED]

Index name or pattern

Patterns allow you to define dynamic index names using * as a wildcard. Example: logstash-*

netflow:

) Do not expand index pattern when searching (Not recommended)

By defaul, searches against any time-based index pattern that contains a wildcard will automatically be expanded to query only the
indices that contain data within the currently selected time range.

Searching against the index pattern logstash-" wil actually query elasticsearch for the specific matching indices (e.g. logstash-2015.12.21)
that fall within the current time range.

Time-fieldname @ refresh fields

@timestamp v

_images/kibana-configure-index-packet.png
<« C' | ® 127.00.1:5601/app/kibana#/settings/indices/?_g=(refreshinterval:(display:Off, pause:!f,value:0),time:(from:now-15m,mode:quick to:now)) amw 1 & A

Dashboard

Advanced Objects Status

Index Pattems.

[No defaultindex pattern. You must selector Configure an index pattern

create one to continue:
In order to use Kibana you must configure at least one index pattem. Index pattems are used to identify the Elasticsearch index to run search and analytics against. They are also used to configure fields

¥l Index contains time-based events

Use event times to create index names [DEPRECATED]
Index name or pattern
Pattems allow you to define dynamic index names using * as a wildcard. Example: logstash-*

peap’

Do not expand index pattern when searching (Not recommended)
By default, searches against any time-based index pattem that contains a wildcard will automatically be expanded to query only the indices that contain data within the currently selected time range
‘Searching against the index pattem logstash-* il actually query elasticsearch for the specific matching indices (e.g. logstash-2015.12.21) that fall within the current time range.

Time-field name @ refresh fields.

@timestamp

_images/kibana-jms-records.png
K kibana

Discover
Visualize
Dashboard
Timelion

Machine Learning

Graph

Dev Tools

Monitoring

Management

2 hits
Search...
logisland*
Selected Fields
? _source
Available Fields

© @timestamp
t _id

t _index

_score

t _type

t correlation_id
t destination

t message_id
t message_text
mode

priority

t record_id

record_time

t record_type

O redelivered

t type

Count

(]

23:59:00

Time

v August 24th 2018, 00:12:24.000

Table JSON

+ % O+ W W O+ &+ &+ o+ o+ W+ o+ O

@timestamp
_id

_index

_score

_type
correlation_id
destination
message_id
message_text
mode

priority
record_id

record_time

record_type

QQm*
QQam*
QQam*
QQam*
QQam*
QQm*
QQm*
QQm*
QQm*
QQm*
QQm*
QQm*
QQm*
QQm*

00:00:00

New Save Open Share Reporting <€ O Last15minutes >
August 23rd 2018, 23:57:41.878 - August 24th 2018, 00:12:41.878 — Auto 4
o
00:01:00 00:02:00 00:03:00 00:04:00 00:05:00 00:06:00 00:07:00 00:08:00 00:09:00 00:10:00 00:11:00 00:12:00
@timestamp per 30 seconds
_source

@timestamp: August 24th 2018, 00:12:24.000 correlation_id: destination: queue://test-queue message_id: ID:lo
calhost-60660-1534975316018-4:6:1:1:2 message_text: Hello Logisland from JMS! mode: 1 priority: @ record id:

4965ac08-ed13-493f-9e39-45067fe06f78 record_time: 1,535,062,344,561 record type: kafka_connect redelivered: fal
se type: _id: 4965ac08-ed13-493f-9e39-45067fe@6f78 _type: kafka_connect _index: logisland.2018.08.23

_score: -

View surrounding documents View single document

August 24th 2018, 00:12:24.000
4965ac08-ed13-493f-9e39-45067fe0678
logisland.2018.08.23

kafka_connect

queue://test-queue
ID:localhost-60660-1534975316018-4:6:1:1:2
Hello Logisland from JMS!

1

0

4965ac08-ed13-493f-9e39-45067fe0678
1,535,062,344,561

kafka_connect

_images/kibana-logisland-aggregates-events.png
‘ ® ©® ® /A kibana x { = localhost:9200/logisland.201~ x ¢ [f[f] Tutorials —logisland 0.10.0-1 x) Logisland v0.10.2 tutorials do- x B Tutorials — logisland 0.10.2 ¢ x " Thomas

& © ‘(DIocalhost:5601/app/kibana#/visualize/create?type:metrics&_g:(refreshlntervaI:(display:Off,pause:!f,value:O),time:(fro... \i‘(‘ e TO0ORBFL0DHO X o = @
i Apps 19 Grafana &) Webmail [4 Kibana @\ Ambari- hurence [] Yarn - hurence @ ES - hurence #) sd-79372.dedibox.f... [J] Resource Allocation... [Z] Raspberry Pi Music... @' appear.in - one clic... »

Visualize / New Visuallization (unsaveaq) Save Snare Retresn Reportung <€ W July 1St 1995, U3:34:40.34/ 10O JUly £Nd 1995, UZ125115.983

kibana

Time Series Metric TopN Gauge Markdown

Discover

80,000
Visualize > @ Average of avg_by 67,657.94

Jul 1, 1995 6:00 PM
Dashboard T
Timelion
Machine Learning
Graph
Dev Tools
Monitoring

Panel Options Annotations
Management

v . Label

Metrics Options
@ Aggregation Field

Average avg_bytes_out

Group By Everything
Everything
Filter
Filters

Q Collapse Terms

_images/kibana-logisland-dashboard.png
/ Wl dashboard_netflo. x \{__\

& © C 0 | ® sandbox:5601/app/kibanatt/dashboard/dashboard_netFlow?_g=(refreshinterval(display:’5%20seconds’ pause:f section:1 value:5000) time:(From:2017-04-05T12:12:13.317Z mode:absoluteto:2017-04-05T1 @ % | H & B
Apps B hurence M logisland Wm stage <Y Spark Streaminc M questions/résur [} Mining Console | [I stage | Trello
ot e of Neow vent ,x Incorin ven e rtcl ’x
= ot Descendig - Q0 Count B
181,379 ;
9 . soess
= = >
Tops s Tops =i Nomber of Pckesper s prt (09 20 ,x
Top st port ’x Top 5t ,x NomberofPckes pr st port 1020 ,x
- () E IIIIII IIIIIIIIIII
Incomin flow pr P o 5) ,x
o e
incomin fon ,x

_images/kibana-logisland-metrics-packet-stream-pycapa.png
e

Selected Fields
&
Available Fields
vailable Fiel (o] L
stal 2
@tmestamp g w
_id 20
_index o
214000
_score
_type
dest_port
Time
dstip
> April 26th 2017, 21:49:00.000
olobal_magic
ip_checksum

ip_datagram_total_length
ip_flags
ip_fragment_offset
ip_idenifcation > April 26th 2017, 21:49:00.000
ip_intemet_header_length

ip_time_to_live,

ip_type_of_sevice

ip_version

LTI > April 26th 2017, 21:49:00.000
processor_name

protocol

record_errors

record_id

record_ime > April 26th 2017, 21:49:00.000
record_type

stc_ip

src_port

tep_acknowledgment_number

April 26th 2017, 21:39:08 675 - April 26th 2017,21:49:08675 — Second ¥

214100 214200 214300 214400 214500 214600 214700 214800 214900
@timestamp per second
~
_source
@timestanp: April 26th 2017, 21:49:00.000 dest_port: 5,601 dst_ip: 172.17.0.2 global magic: 725,372,255 ip_checksum: 56,334 ip_datagram_total length: 40 ip_flags: 0
ip_fragnent_offset: 0 ip_identification: 59,308 ip_internet_header_length: 20 ip time_to_live: 63 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: 6ldc4712-5741-41b7-865a-9548dFd7a8cE record time: 1,493,236,140,034 record_type: pcap_packet src_ip: 10.0.2.2 src_port: 53,545

tcp_acknouledgnent_number:

2,112,156,986 tcp_checksum: 13,994 tcp_conputed_data_length: O tcp_computed dest_ip: 172.17.0.2 tcp_computed_reassembled_length: O tcp_computed_relative

@tinestanp: April 26th 2017, 21:49:00.000 dest_port: 53,545 dst_ip: 10.0.2.2 global magic: -725,372,255 ip_checksum: 35,602 ip_datagram_total length: 45 ip_flags: 2
ip_fragnent_offset: 0 ip identification: 63,395 ip internet_header_length: 20 ip time to_live: 64 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: 4a23d64b-a7ci-4858-5F5a-5b86536697F7 record time: 1,493,236,140,033 record_type: pcap_packet src_ip: 172.17.0.2 src_port: 5,601

tcp_acknouledgnent_number: 417,417,280 tcp_checksum: 47,156 tcp_conputed_data length: 5 tcp_computed dest_ip: 10.0.2.2 tcp_computed_reassembled_length: O tcp_computed_relative ack: 0

@tinestanp: April 26th 2017, 21:49:00.000 dest_port: 5,601 dst_ip: 172.17.0.2 global magic: 725,372,255 ip_checksum: 56,329 ip_datagram_total length: 40 ip_flags: 0
ip_fragnent_offset: 0 ip identification: 59,313 ip_internet_header_length: 20 ip time_to_live: 63 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: 40b094c2-adbl-4723-9Fc5-dcbbSCISIE13 record time: 1,493,236,140,067 record_type: pcap_packet src_ip: 10.0.2.2 src_port: 53,545

tcp_acknouledgnent_number: 2,112,164,223 tcp_checksus

6,757 tcp_computed_data_length: O tcp_computed_dest ip: 172.17.0.2 tcp_computed_reassembled_length: O tcp_computed_relative

@tinestanp: April 26th 2017, 21:49:00.000 dest_port: 5,601 dst ip: 172.17.0.2 global magic: 725,372,255 ip_checksum: 55,663 ip datagram_total length: 732 ip_flags: 0
ip_fragnent_offset: 0 ip_identification: 59,287 ip_internet_header_length: 20 ip time to_live: 63 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: S0602fOb-eScS-4b22-aB42-3506c4283c36 record time: 1,493,236,140,033 record_type: pcap_packet src_ip: 10.0.2.2 src_port: 53,545

tep_acknouledgnent_number: 2,112,131,161 tcp_checksum: 32,605 tcp_computed_data length: 692 tcp_computed dest_ip: 172.17.0.2 tcp_computed_reassembled length:

0 tcp_computed_relative

_images/kibana-logisland-metrics.png
® © ® /[indexapacheLogs - Streamin: x / [Discover - Kibana X ({8 elasticsearch-head % { A\ cat: output specific number o' X | e

<« C | ® sandbox:5601/appykibanat/discover?.

refreshinterval:(display:Off,pause:!f,value:0) time:(fror

ow-15m,mode:quick to:now))&a.

ar|Ce ¥ Ga$+0

p— e 0110517201 v 1, 13217291~
e
g ..

Gtmmsirn H

-) . l .

s .

= Comatare ot

- "

e —

. o
S —
‘average_bytes per_second. - November 10th 2016, 11:08:20.000 geimestamp: November 10th 2016, 11:08:20.000 average bytes per_field: 29 average bytes per record: 148 average bytes per s

P—— 4 average_elelds por _rocord: 5 average_nua _records_per_secosds 111 coaponent_sase: Vatchauery error_percestage: O imput topics: logis]
and_aggregations nus incoaing messages: 20 nus incoming records: 20 mus outgoing_records: 2 output_topics: logisland alerts record_idi ¢
60896 1abd-46d5-a7cc-d184cA80Fd32 xecord_time: 1,478,772,500,055 rocord_types logisland setrics spack spp mame: QueryMatching

‘component_name ! N)
i, apark pactition 14: 0 tople offsst froms 180 tople offsst untili 200 total bytes: 295 total leldss 10 total processing tine in mer 1
input topics ot | s ik o /loqis1and. 2016.11.09/Toais1and necri s /AvhexykefukonTavx
numincoming messages.
num_incomig records etinestamp @Q 0 November 10th 2016, 11:08:20.000
um_outgoing records @Q @ AvhwoykesfukoaTARX
topics) Togisland.2016.12.09
rcord erors _score o
R type D Togistand_netrics
(e average bytes_per_field aam»
(D average bytes_per._record aam 1
racord type
s average bytes_per_second @am 16444
R average_fields per_record @ QM 5
o average nus_records_per_second @ @ @ 111
topi.ofsetuntl conponent._nane @ QM wachaery
tctaLyien error_percentage @amo
totailds input_topics @ Q[logisland_aggresations
totl_processing.time in.ms. nun_incoming_nessages aam o
nun_incoming_records aam
nun_outgoing_records aam?
output_topics @Qm logistland aterss
record_id @Q 0 4cadbs9s-1abd-46d5-a7ce-d18dcan0fe32
record_tine @am 1,478,772,500,055

@Q @ logisland_netrics

@Q [auerymatching

aamo
topic_offser_fron aam o
topic_offser_until aam o
ol byes aam s
total_fields aam w0

total_processing_timeinns @ Q@ 18

_images/kibana-logisland-import-dashboard.png
I settings-kibana [l dashboard_netfio. x _\

tab:dashboards)&_g=(refreshinterval:(display:'5%20seconds’paus a»\ B 9 &
8 questions/résur [} Mining Console =[] stage | Trello

< C) | ® sandbox:5601/app/kibanat/settings/objects?
Apps B hurence M logisland m stage < Spark Streaminc

Edit Saved Objects

From here you can delete saved objects, such as saved searches. You can also edit the raw data of saved objects. Typically objects are only modified via their

associated application, which is probably what you should use instead of this screen. Each tab is limited to 100 results. You can use the filter to find objects not in the

default fist.

Dashboards (1)~ Searches (1) Visualizations (14)

Dsean ([

@ dashboard netflow

showall | x

exportjson

_images/kibana-logisland-metrics-netflow.png
M Discover - kibana

x

Apache Spot (Incul x

e) e

& © C {0 | ® sandbox:5601/app/kibanat/discover?

(columns:(_source) index‘netFlow. intervalauto,query:(query stringan ¥ | Fd ® Bk

Selected Fields

Avilale Fieds [y
@timestamp
d
_index.
_type
doctets
dpkts
dstas
dst_host
dst_ mask
dstaddr
dstport
duration
frst
input
last

nexthop

Count

1000
s00
00
400
20

Apps B hurence M logisland Bm stage < Spark Streaminc [questions/résur (] Mining Console [T stage | Trello

39,726 hits

Aprl 7th 2017, 14:57:05.372 - April 7th 2017, 15:57:05.372 — by minute

i

1500 1505 1310 1515 1520 1525 1530 1535 1540 1545 1550 1535

Time.

@timestamp per minute
~

April 7th 2017, 15:56:54.000 gtimestanp: April 7th 2017, 15:56:54.000 dictets: 26,058,258 dPkts: 99,459

April 7th 2017, 15:5¢

dst_as: 0 dst_mask: 0 dstaddr: 192.168.1.101 dstport: 57,131
duration: 7,000 first: 2,732,000 input: 0 last: 2,739,000 nexthop: 0.0.
blfded42-d991-4edc-85ad-dco6T16133ac

0.0 output: 0 prot: 6 record id:

@timestamp: April 7th 2017, 15:56:54.000 doctets: 12,213,495 dPkts: 63,045
dst_as: 0 dst_host: localhost dst mask: 0 dstaddr: 127.0.0.1 dstport: 4
2,506 duration: © first: 2,720,000 input: © last: 2,720,000 nexthop: 0.
0.0.0 output: 0 prot: 6 record id: 4b54cabb-38c1-41c1-9cdf-bdadeb7ca7bf

_images/kibana-threshold-alerts.png
©® O ® /[queryMatching - Streaming & x / []] Kibana X ({8 elasticsearch-head

refreshinterval:

isplay:Off, pause

€& C | ® sandbox:5601/app/kibana?#/discover

kibana ~ = == = U —
record_type:threshold_alert 5 0 5 o

fvalue:0) time: (from:'1995-06-29T22:00:00.000Z'mod... % | [€ @ % & & + O

p—— e 50050704y 5500005080 iz
L <
. ;
Available Fields
a..
J—— 3
i
. ‘ [1 1 I, |
e .
Jcom ‘@timestamp per 3 hours
type ~
s e - e
Quick Count @ (13 v July 6th 1995, 00:24:30.000 record type: ‘threshold_alert etimestamp: July 6th 1995, 00:24:30.000 alert match mame: too_many_connecti
to0_many_connections eq ons alert_match_guery: connections_count:([500 TO 1000000] avg_bytes_out: 20,773.002 conmections_count: 60

G) 4 rocord_id: beSZOS0-0325-452C-0506-50CO2362402 record_tine: 804,983,070,000 sre_ip: pinebady.prodigy.
Visualize (1 warning &) om _id: AVANGfgOr4fukOAZEYT_ _type: threshold_alert _index: logisland.2016.11.09 _score:

alert_match_query

avg_bytes_out Link to /logisland.2016.11.09/threshold_alert/AVhN6fq0r4fukoATEvT.
- Table Isow

‘connections_count

) atimestamp @ @ m July 6th 1995, 00:24:30.000
gD _id @ @ D AVANGFgOr4fukoaZEvT_
D _index @ logisland.2016.11.09
src_ip _score o

—type @ threshold_alert

alert_match_name @ Q (D too_many_connections
alert_match_query @ @ [connections_count:[500 To 1000000]
avgbytesout @ @ D 20,773.002

connections_count @ @ @ 604

record_id @ @ M bde92060-d325-492-9506-5dc92362402b.
record_time @ @ m 804,983,070,000

record_type @ Q@ [[threshold_alert

srcip @ @ M piwebaly.prodigy.con

» July 6th 1995, 00:13:45.000

€0597747-3Ff2-4ef0-0609-3e50ee46ac0a record_time: 804,982,425,000 src_ip: news.ti.com
_id: AVANGTQOr4fukOA7EYUA _type: threshold_alert _index: logisland.2016.11.09 _score:

_images/logisland-workflow.png
3.
records are

indexed to search
engine while they
appear

¢34 elastic

2.
raw messages
are converted
to structured
records

3.
records are
dumped
periodically to
Hadoop

1.
raw messages
are sent to
Kafka topics for
processing

3.
records are
processed to
extract patterns
or alerts

4,
records are
processed in batch

to build analytics
models

raw messages &
structured records
are both stored in
Kafka topics to be
processed in parallel

analyst

_images/kibana-match-queries.png
‘ ® ©® ® /A kibana x (m localhost:9200logisl- x (() How to get bash or s< x ! [f[f] Tutorials —logisland = x (() Logisland v0.10.2 tut x { - stackoverflow.com x B Alerting & Query Matc x * Thomas

& C' | @ localhost:5601/app/kibana#/discover?_g=(refreshinterval:(display:Off,pause:!f,value:0),time:(from:'1995-06-20T01:0... ¥ @ P O\ ¥ ~ O L9 :
[x]
i Apps 19 Grafana & Webmail [4 Kibana @\ Ambari- hurence [Yarn - hurence @ ES - hurence #) sd-79372.dedibox.f... [l Resource Allocation... [) Raspberry Pi Music.. @' appear.in - one clic... »
413 hits New Save Open Share Reporting
alert_match_name:* n
Discover logisland* @ _source
Visualize Selected Fields » @timestamp: July 2nd 1995, 01:15:54.000 alert match name: blacklisted_host alert match query: src_ip:(+alyssa +prodigy) bytes_out: 5
D TR 8868 http_method: GET http_query: /shuttle/countdown/video/1ivevideo.gif http status: 200 http_version: HTTP/1.0 identd: -
Dashboard record_id: 6e8aa32a-1d4c-40f5-a385-809e42c8c232 record raw value: alyssa.prodigy.com - - [01/3u1/1995:19:15:54 -0400] "GET /shuttle/co
Timelion Available Fields n untdown/video/Tivevideo.gif HTTP/1.0" 200 58868 record_time: 804,640,554,000 record_type: apache_log src_ip: alyssa.prodigy.com
Popular user: - _id: 6e8aa32a-1d4c-40f5-a385-809e42c8c232 _type: apache_log _index: logisland.2017.10.17 _score: -
Machine Learning
£ srcip » @timestamp: July 2nd 1995, 01:15:33.000 alert match_name: blacklisted_host alert_match_query: src_ip:(+alyssa +prodigy) bytes_out: 7
(it © @timestamp 074 http_method: GET http_query: / http_status: 200 http_version: HTTP/1.0 identd: - record_id: 48b4db62-749b-4400-aceb-7c957ele6
Dev Tools t _id 070 record_raw_value: alyssa.prodigy.com - - [01/3Ju1/1995:19:15:33 -0400] "GET / HTTP/1.0" 200 7074 record_time: 804,640,533,000
NG record_type: apache_log src_ip: alyssa.prodigy.com user: - _id: 48b4db62-749b-4400-aceb-7c957e1e6070 _type: apache_log _index: 1o
Monitoring gisland.2017.10.17 _score: -
_score -
japasement t _type » @timestamp: July 2nd 1995, 01:14:53.000 alert match_name: blacklisted_host alert_match_query: src_ip:(+alyssa +prodigy) bytes_out: 5
9703 http_method: GET http_query: /shuttle/countdown/video/livevideo.gif http_status: 200 http_version: HTTP/1.0 identd: -
Quick € ‘0 record_id: d6ealbbe-68d5-4cfe-baab-7d1c497e82e7 record_raw _value: alyssa.prodigy.com - - [01/3u1/1995:19:14:53 -0400] "GET /shuttle/co
uic oun
(413 /413 records) untdown/video/Tivevideo.gif HTTP/1.0" 200 59703 record_time: 804,640,493,000 record_type: apache_log src_ip: alyssa.prodigy.com
user: - _id: d6eal6be-68d5-4cfe-baab-7d1c497e82e7 _type: apache_log _index: logisland.2017.10.17 _score: -
blacklisted_host Qe
aa » @timestamp: July 2nd 1995, 01:14:42.000 alert match_name: blacklisted_host alert_match_query: src_ip:(+alyssa +prodigy) bytes_out: 4
montana_host
538 http_method: GET http_query: /shuttle/countdown/Tiftoff.html http_status: 200 http_version: HTTP/1.0 identd: - record_id: 54f
15cdd-f7el-4dc4-92ee-18019387d916 record raw_value: alyssa.prodigy.com - - [01/Ju1/1995:19:14:42 -0400] "GET /shuttle/countdown/1iftof
t alert_match_que|
N Ky f.html HTTP/1.0" 200 4538 record time: 804,640,482,000 record type: apache_log src_ip: alyssa.prodigy.com user: - _id: 54f15cdd-f7

¢ bytes_out el-4dc4-92ee-18019387d916 _type: apache_log _index: Tlogisland.2017.10.17 _score: -

t http_method
¢ http_query » @timestamp: July 2nd 1995, 01:08:36.000 alert match_name: blacklisted_host alert_match query: src_ip:(+alyssa +prodigy) bytes_out: 1
¢ http_status 932 http_method: GET http_query: /shuttle/resources/orbiters/orbiters-logo.gif http_status: 200 http_version: HTTP/1.0 identd: -

o b . record_id: 2ef91f48-218d-4212-a3b4-ee036cde807e record_raw_value: alyssa.prodigy.com - - [01/3Ju1/1995:19:08:36 -0400] "GET /shuttle/re
p_version

sources/orbiters/orbiters-logo.gif HTTP/1.0" 200 1932 record time: 804,640,116,000 record type: apache_log src_ip: alyssa.prodigy.co
© Collapse t identd

_images/kibana-save-search.png
/ M Discover - Kibana

Selected Fields

@timestamp
d

_index
_type
doctets
dpkts
dstas
dst_host

dstioa

Available Fields. (o]

x \ G curlelasticsearch ¢ x) Index templatenc' x \ 2 elasticsearch-Hov x Y & database-Elastics

x \

Count

‘April 11th 2017,09:52:09.529 - Aprl 12th 2017, 09:52:09.529 — by 30 minutes

2500
2000
1500
1000
500
o
1100 1400 1700 2000 200 0200
@timestamp per 30 minutes
~
Time. _source:

27.000 doctets: 3,363,716

April 1ith 2017, 18:06:27.008 gtimestamp: April 11th 2017, 18

<« C) | ® sandbox:5601/app/kibanat/discover?_g=(filters:(),refreshinterval:(display:’5%20seconds’ pause:1F.section:1value:5000) time @ v | A ® B
Apps B hurence M logisland Wm stage <Y Spark Streaminc M questions/résur [} Mining Console | [I stage | Trello

o500

dPkts: 11,599 dst e

2,582 hits

o800

dst_ipd: 192.168.1.102 dst_mask: © dst_port: 35,002 duration: 54,000 first: 121,000 flags: 2
22 dmput: © last: 175,000 nexthop: ©.0.0.0 nmprot: 6 output: © record id: 632cedaa-8d4s-4dfi-

_images/nifi-drag-template.png
& NiFi

@

C O [® sandboxsoso/aifi/

Apps B hurence B logisland B stage <t Spark Streaming Bl questions/résur (I} Mining Console | [H stage | Trello

Rl z R
wo ‘= 0/0bytes @0 w0 »o m3 Ao o 2 12:40:55 UTC Q
@ Navigate E]
@a Ik a_
&y operate =]
NiFi Flow
b Process Group.
32d55107-015b-1000-26e8-0c3f58671bd1
& > =3

_images/nifi-flow.png
& NiFi

& - C [© sandboxsosojnifi/

Rl z R

Apps M hurence M logisland B stage < Spark Streamin M questions/résur (] Mining Console |

o

[stage|Trello

£ 12:47:26 UTC

ListenUDP
Processor

32dbe663-015b-1000-1b17-415e850aab94
& x> E 3
@& o Woaee

@ Navigate E]

W ListenUDP
S =i

& operate E]

n 0(0bytes) 5
Read/Write 0 bytes /0 bytes 5
out 0(0bytes) 5
Tasks/Time 0/00:00:00.000 §

Name success

Queued 0 (0bytes)

W Putkafka

[S) =pa
n 0(0bytes)
Read/Write 0bytes /0
out 0(0bytes)

Tasks/Time 0/00:00:00.000

& Configure
» start

1aa Status History

L Data provenance

© Upstream connections
© Downstream connections
8 Usage

o Change color

© Centerin view

= PutFile
Putfile.

_images/logisland_api_flows.png
Logisland API

Logisland

T3 [each poliing period
alt for any change]

[nothing changed

Application

HTTP 304

[each pushing
perlod (or conf
changed)]

[i B

¢ Ack OK.

www.websequencediagrams.com

_images/solr-query.png
L

Solf

@ Dashboard
(3 Logging

£ Core Admin

(2 Java Properties

Thread Dump

solrapache-ogs

Y

[

B

1 E & o

1‘\\\

Request-Handler (qt)
Jselect

common

fq

sort

start, rows

[

df

Raw Query Parameters

keyl=vall&key2=val2

wt

json

@ indent
debugQuery

dismax
edismax
hi

facet

spatial

spellcheck

1{

“responseHeader":{

"QTime":0,

http_version":"HTTP/1.0",
http_status":'304"

http_version":"HTTP/L.
"http_status":"200",
"b6aa0fe7-62674523-b693-7dcfB0C56b54",

http_version":" HTTP/1.0",
http_status"'200",
20790cC6-3149-4790-8116-1396696b0520

user":',
version"1585034992084566016}.

- ip":unicomps.unicomp.net",
http_method":"GE
“http_query":*/shuttle/countdown/count gif",

http_statu:
0cfccb94-b920-4d7a-bea3-7490081dba31",

src_ip
“http_method"'GET",

images/NASA-ogosmall gif",
"bytes_out":' 786",

entd"

http_version
“http_status":
fedbf5d9-c30c-468Fae76-60f48bd1dbob",

http_version":"HTTP/1.0",
http_status":'200"

. ip":"waters-gw.starwaynet.au",
"http_method":'GET",
shuttle/missions/51-ymission-51-L html",
6723",

http_version":"HTTP/L.
“http_statu
+"a38b0192-2855-4272-a874-270835¢27a17",

http_version":"HTTP/1.0",
http_status":"20
€4b93791-300b-4e52-bfcd-d5ffdc54d7f1

user':',
_version_1585034992110780416}.

- ip":unicomps.unicomp.net",
http_method":"GE
“http_query":*/shuttlecountdown/",

http_statu:
"8ac55ab2-0e3¢40a7-be90-c62b67feB687",

_version_1585034992111828992],

sr_ip":*dial22.lloyd.co
“http_method"'GET",
shuttle/missions/sts-71/images/KSC-95EC-0613.jpg",
61716",

entd"
http_version
“http_status":
36008d0a-b8a9-42be-afBd-e2cdc8169a30",

*_version_":1585934992114974720}]
n

[Documentation 4 Issue Tracker

2R IRC Channel

(4 Community forum

Use original Ul &

o] solr Query syntax

_images/spark-job-monitoring.png
® © @ /[indexapacheLogs - Streamin: X 9‘

& > C | ® localhost:4050/streaming/ ex|Ee ¥ Ga ¥ +0:
i apps [[USI] Lambda-Archi.. “3 Pragmatic Program... By Getting started wi @ RegEx Quick Refere... § Improved Fault-tole.. & NiFi [J] Partitions and Parti.. [Kafka Consumer Of.. @) Ambari-hurence [1 Yarn - hurence &2 ES - hurence »

Spoﬁ? s Jobs Stages Storage Environment Executors = Streaming IndexApacheLogs application Ul

Streaming Statisti

Running batches of 4 seconds for 2 minutes 54 seconds since 2016/11/10 11:06:00 (22 completed batches, 775121 records)

Timelines (Last 42 batches, 20 active, 22 completed) Histograms

events/sec
20,000.00:
15,000.00
» Input Rate 10,0000
Aug: 5969.59 eventslsee g 00 00 /\
000
06:08

REE

0 5 10 15 20

‘Scheduling Delay
Avg: 58 seconds 518 ms

Processing Time
Avg: 7 seconds 231 ms

Total Delay
Avg: 1 minute 4 seconds.

Active Batches (20)

Batoh Time ‘Scheduling Delay Output Ops: Succeeded/Total
2016/11/10 11:08:52 -

2016/11/10 11:08:48 -

2016/11/10 11:08:44

2016/11/10 11:08:40

2016/11/10 11:

_images/nifi-template-dialog.png
<
Apps B hurence B logisland Bu stage

spark Streaminc [questions/résur

Upload Template

Select Template Q.

nifi_netflow.xml

CANCEL

{0 Mining Console

[stage | Trello

_images/solr-dashboard.png
Use original Ul &

d pm—
S [r Z | dwstance ystem 050053052 '
() @ start about 3 hours ago Prysical Memory
ST = vione
Loggin
8 Loggng 2 solrspec 662
¥ core Admin solr-impl 6.6.2 dfade29b55369876760bb741d687e47b67f9613 - ishan - 2017-10-15 22 Swap Space
Java Properties. o lucenespec 6.6.2
= Thread Dump luceneimpl 6.6.2 df4de20b55369876769bb7410687e47b6 7119613 - ishan - 2017-10-15 22
Core Selector File Descriptor Count 0
2w = JVM-Memory -
[runtime Oracle Corporation OpenJDK 64-Bit Server VM 1.8.0_151 25.151-b12
B Processors 8
a | -
s DSTOPKEY=solrrocks 25,05 78
-DSTORPORT=7983
“Dietty home=/home/chokwork/hurence/solr/solr6.6.2/server
Diettyport-8983
“Dsol.nstall.dir=/home/chok/work/hurencesolr/solr-6.6.2
-Dsolr.log.dir=/home/chok/work/hurence/solfsolr-6.6.2/serverflogs
-Dsolrlog.muteconsole

_static/activemq-send-message.png
ActiveM0

Home | Queues | Topics | Subscribers | Connections | Network | Scheduled