
logisland Documentation
Release 0.10.0-rc1

bailet.thomas

Jun 06, 2017

Contents

1 Contents: 3
1.1 Introduction . 3
1.2 Core concepts . 3
1.3 Architecture . 4
1.4 Developer Guide . 6
1.5 Tutorials . 10
1.6 API design . 67
1.7 Components . 73
1.8 What’s new in logisland ? . 103
1.9 Frequently Asked Questions. 104

2 Indices and tables 109

i

ii

logisland Documentation, Release 0.10.0-rc1

Chat with us on Gitter Download the latest release build and unzip on an edge node.

Contents 1

https://github.com/Hurence/logisland/releases

logisland Documentation, Release 0.10.0-rc1

2 Contents

CHAPTER 1

Contents:

Introduction

you can find a quick presentation below :

Core concepts

The main goal of LogIsland framework is to provide tools to automatically extract valuable knowledge from historical
log data. To do so we need two different kind of processing over our technical stack :

1. Grab events from logs

2. Perform Event Pattern Mining (EPM)

What we know about Log/Event properties :

• they’re naturally temporal

• they carry a global type (user request, error, operation, system failure...)

• they’re semi-structured

• they’re produced by software, so we can deduce some templates from them

• some of them are correlated

• some of them are frequent (or rare)

• some of them are monotonic

• some of them are of great interest for system operators

3

logisland Documentation, Release 0.10.0-rc1

What is a pattern ?

Patterns, actually are a set of items subsequences or substructures that occur frequently together in a data set we call
this strongly correlated. Patterns usually represent intrinsic and important properties of data.

From raw to structure

The first part of the process is to extract semantics from semi-structured data such as logs. The main objective of this
phase is to introduce a canonical semantics in log data that we will call Event which will be easier for us to process
with data mining algorithm

• log parser

• log classification/clustering

• event generation

• event summarization

Event pattern mining

Once we have a cannonical semantic in the form of events we can perform time window processing over our events
set. All the algorithms we can run on it will help us to find some of the following properties :

• sequential patterns

• events burst

• frequent pattern

• rare event

• highly correlated events

• correlation between time series & events

Architecture

Is there something clever out there ?

Most of the systems in this data world can be observables through their events. You just have to look at the event
sourcing pattern to get an idea of how we could define any system state as a sequence of temporal events. The main
source of events are the logs files, application logs, transaction logs, sensor data, etc.

Large and complex systems, made of number of heterogeneous components are not easy to monitor, especially when
have to deal with distributed computing. Most of the time of IT resources is spent in maintenance tasks, so there’s a
real need for tools to help achieving them.

Note: Basicaly LogIsland will help us to handle system events from log files.

4 Chapter 1. Contents:

https://msdn.microsoft.com/en-us/library/dn589792.aspx
https://msdn.microsoft.com/en-us/library/dn589792.aspx

logisland Documentation, Release 0.10.0-rc1

Data driven architecture

Technical design

LogIsland is an event processing framework based on Kafka and Spark. The main goal of this Open Source platform
is to abstract the level of complexity of complex event processing at scale. Of course many people start with an ELK
stack, which is really great but not enough to elaborate a really complete system monitoring tool. So with LogIsland,
you’ll move the log processing burden to a powerful distributed stack.

Kafka acts a the distributed message queue middleware while Spark is the core of the distributed processing. LogIsland
glue those technologies to simplify log complex event processing at scale.

1.3. Architecture 5

logisland Documentation, Release 0.10.0-rc1

Developer Guide

This document summarizes information relevant to logisland committers and contributors. It includes information
about the development processes and policies as well as the tools we use to facilitate those.

Workflows

This section explains how to perform common activities such as reporting a bug or merging a pull request.

Coding Guidelines

Basic

1. Avoid cryptic abbreviations. Single letter variable names are fine in very short methods with few variables,
otherwise make them informative.

2. Clear code is preferable to comments. When possible make your naming so good you don’t need comments.
When that isn’t possible comments should be thought of as mandatory, write them to be read.

3. Logging, configuration, and public APIs are our “UI”. Make them pretty, consistent, and usable.

4. Maximum line length is 130.

5. Don’t leave TODOs in the code or FIXMEs if you can help it. Don’t leave println statements in the code.
TODOs should be filed as github issues.

6 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

6. User documentation should be considered a part of any user-facing the feature, just like unit tests. Example
REST apis should’ve accompanying documentation.

7. Tests should never rely on timing in order to pass.

8. Every unit test should leave no side effects, i.e., any test dependencies should be set during setup and clean
during tear down.

Java

1. Apache license headers. Make sure you have Apache License headers in your files.

2. Tabs vs. spaces. We are using 4 spaces for indentation, not tabs.

3. Blocks. All statements after if, for, while, do, . . . must always be encapsulated in a block with curly braces
(even if the block contains one statement):

for (...) {
...

}

4. No wildcard imports.

5. No unused imports. Remove all unused imports.

6. No raw types. Do not use raw generic types, unless strictly necessary (sometime necessary for signature matches,
arrays).

7. Suppress warnings. Add annotations to suppress warnings, if they cannot be avoided (such as “unchecked”, or
“serial”).

8. Comments. Add JavaDocs to public methods or inherit them by not adding any comments to the methods.

9. logger instance should be upper case LOG.

10. When in doubt refer to existing code or Java Coding Style except line breaking, which is described above.

Logging

1. Please take the time to assess the logs when making a change to ensure that the important things are getting
logged and there is no junk there.

2. There are six levels of logging TRACE, DEBUG, INFO, WARN, ERROR, and FATAL, they should be used as
follows.

2.1. INFO is the level you should assume the software will be run in. INFO messages are things
which are not bad but which the user will definitely want to know about every time they occur.

2.2 TRACE and DEBUG are both things you turn on when something is wrong and you want to figure out
what is going on. DEBUG should not be so fine grained that it will seriously effect the perfor-
mance of the server. TRACE can be anything. Both DEBUG and TRACE statements should be
wrapped in an if(logger.isDebugEnabled) if an expensive computation in the argument list of
log method call.

2.3. WARN and ERROR indicate something that is bad. Use WARN if you aren’t totally sure it is bad,
and ERROR if you are.

2.4. Use FATAL only right before calling System.exit().

1.4. Developer Guide 7

http://google.github.io/styleguide/javaguide.html

logisland Documentation, Release 0.10.0-rc1

3. Logging statements should be complete sentences with proper capitalization that are written to be read by a
person not necessarily familiar with the source code.

4. String appending using StringBuilders should not be used for building log messages. Formatting should
be used. For ex: LOG.debug(“Loaded class [{}] from jar [{}]”, className, jarFile);

TimeZone in Tests

Your environment jdk can be different than travis ones. Be aware that there is changes on TimeZone objects between
different version of jdk... Even between 8.x.x versions. For example TimeZone “America/Cancun” may not give the
same date in your environment than in travis one...

Contribute code

Create a pull request

Pull requests should be done against the read-only git repository at https://github.com/hurence/logisland.

Take a look at Creating a pull request. In a nutshell you need to:

1. Fork the Logisland GitHub repository at https://github.com/hurence/logisland to your personal GitHub account.
See Fork a repo for detailed instructions.

2. Commit any changes to your fork.

3. Send a pull request to the Logisland GitHub repository that you forked in step 1. If your pull request is related
to an existing IoTaS github issue ticket – for instance, because you reported a bug report via github issue earlier
– then prefix the title of your pull request with the corresponding github issue ticket number (e.g. IOT-123: ...).

You may want to read Syncing a fork for instructions on how to keep your fork up to date with the latest changes of
the upstream Streams repository.

Git Commit Messages Format

The Git commit messages must be standardized as follows:

LOGISLAND-XXX: Title matching exactly the github issue Summary (title)

• An optional, bulleted (+, -, ., *), summary of the contents of

• the patch. The goal is not to describe the contents of every file,

• but rather give a quick overview of the main functional areas

• addressed by the patch.

The text immediately following the github issue number (LOGISLAND-XXX:) must be an exact transcription of the
github issue summary (title), not the a summary of the contents of the patch.

If the github issue summary does not accurately describe what the patch is addressing, the github issue summary must
be modified, and then copied to the Git commit message.

A summary with the contents of the patch is optional but strongly encouraged if the patch is large and/or the github
issue title is not expressive enough to describe what the patch is doing. This text must be bulleted using one of the
following bullet points (+, -, .,). There must be at last a 1 space indent before the bullet char, and exactly one space
between bullet char and the first letter of the text. Bullets are not optional, but required*.

8 Chapter 1. Contents:

https://github.com/hurence/logisland
https://help.github.com/articles/creating-a-pull-request
https://help.github.com/articles/fork-a-repo
https://github.com/hurence/logisland
https://help.github.com/articles/fork-a-repo
https://help.github.com/articles/creating-a-pull-request
https://help.github.com/articles/syncing-a-fork

logisland Documentation, Release 0.10.0-rc1

Merge a pull request or patch

To pull in a merge request you should generally follow the command line instructions sent out by GitHub.

1. Go to your local copy of the [Apache git repo](https://github.com/hurence/logisland.git), switch to the master
branch, and make sure it is up to date.

git checkout master
git fetch origin
git merge origin/master

2. Create a local branch for integrating and testing the pull request. You may want to name the branch according
to the Logisland github issue ticket associated with the pull request (example: LOGISLAND-1234).

git checkout -b <local_test_branch> # e.g. git checkout -b LOGISLAND-1234

3. Merge the pull request into your local test branch.

git pull <remote_repo_url> <remote_branch>

4. Assuming that the pull request merges without any conflicts: Update the top-level changes.rst, and add in the
github issue ticket number (example: LOGISLAND-1234) and ticket description to the change log. Make sure
that you place the github issue ticket number in the commit comments where applicable.

5. Run any sanity tests that you think are needed.

6. Once you are confident that everything is ok, you can merge your local test branch into your local master branch,
and push the changes back to the hurence repo.

Pull request looks ok, change log was updated, etc. We are ready for
→˓pushing.
git checkout master
git merge <local_test_branch> # e.g. git merge LOGISLAND-1234

At this point our local master branch is ready, so now we will push the
→˓changes
to the official repo.
git push origin HEAD:refs/heads/master

7. The last step is updating the corresponding github issue ticket. [Go to github issue](https://hwxiot.atlassian.net)
and resolve the ticket.

Build the code and run the tests

Prerequisites

First of all you need to make sure you are using maven 3.2.5 or higher and JDK 1.8 or higher.

Building

The following commands must be run from the top-level directory.

mvn clean install -Dhdp=2.4 # or -Dhdp=2.5

If you wish to skip the unit tests you can do this by adding -DskipTests to the command line.

1.4. Developer Guide 9

https://github.com/hurence/logisland.git
https://hwxiot.atlassian.net

logisland Documentation, Release 0.10.0-rc1

Release to maven repositories

to release artifacts (if you’re allowed to), follow this guide release to OSS Sonatype with maven

mvn versions:set -DnewVersion=0.10.0-rc1
mvn license:format
mvn test
mvn -DperformRelease=true clean deploy
mvn versions:commit

git tag -a v0.10.0-rc1 -m "new logisland release 0.10.0-rc1"
git push origin v0.10.0-rc1

follow the staging procedure in oss.sonatype.org or read Sonatype book

go to oss.sonatype.org to release manually the artifact

Publish Docker image

Building the image

build logisland
mvn clean install -DskipTests -Pdocker -Dhdp=2.4

verify image build
docker images

then login and push the latest image

docker login
docker push hurence/logisland

Publish artifact to github

Tag the release + upload latest tgz

Tutorials

Chat with us on Gitter Download the latest release build and unzip on an edge node.

Contents:

Index Apache logs

In the following getting started tutorial we’ll drive you through the process of Apache log mining with LogIsland
platform.

We will start a Docker container hosting all the LogIsland services, launch two streaming processes and send some
apache logs to the system in order to analyze them in a dashboard.

10 Chapter 1. Contents:

http://central.sonatype.org/pages/apache-maven.html
https://oss.sonatype.org/#stagingRepositories
http://books.sonatype.com/nexus-book/reference/staging-deployment.html#staging-maven
https://oss.sonatype.org/#stagingRepositories
https://github.com/Hurence/logisland/releases

logisland Documentation, Release 0.10.0-rc1

Note: You can download the latest release of logisland and the YAML configuration file for this tutorial which can
be also found under $LOGISLAND_HOME/conf directory.

1. Start LogIsland as a Docker container

LogIsland is packaged as a Docker container that you can build yourself or pull from Docker Hub. The docker
container is built from a Centos 6.4 image with the following tools enabled

• Kafka

• Spark

• Elasticsearch

• Kibana

• Logstash

• Flume

• Nginx

• LogIsland

Pull the image from Docker Repository (it may take some time)

docker pull hurence/logisland

You should be aware that this Docker container is quite eager in RAM and will need at least 8G of memory to run
smoothly. Now run the container

run container
docker run \

-it \
-p 80:80 \
-p 8080:8080 \
-p 3000:3000 \
-p 9200-9300:9200-9300 \
-p 5601:5601 \
-p 2181:2181 \
-p 9092:9092 \
-p 9000:9000 \
-p 4050-4060:4050-4060 \
--name logisland \
-h sandbox \
hurence/logisland bash

get container ip
docker inspect logisland

or if your are on mac os
docker-machine ip default

you should add an entry for sandbox (with the container ip) in your /etc/hosts as it will be easier to access to all
web services in logisland running container.

Note: If you have your own Spark and Kafka cluster, you can download the latest release and unzip on an edge node.

1.5. Tutorials 11

https://github.com/Hurence/logisland/releases
https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-apache-logs.yml
https://github.com/Hurence/logisland/releases

logisland Documentation, Release 0.10.0-rc1

2. Parse the logs records

For this tutorial we will handle some apache logs with a splitText parser and send them to Elastiscearch Connect a
shell to your logisland container to launch the following streaming jobs.

docker exec -ti logisland bash
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-apache-logs.yml

Setup Spark/Kafka streaming engine

An Engine is needed to handle the stream processing. This conf/index-apache-logs.yml configuration file
defines a stream processing job setup. The first section configures the Spark engine (we will use a KafkaStreamPro-
cessingEngine) as well as an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Main Logisland job entry point
configuration:
spark.app.name: LogislandTutorial
spark.master: local[4]
spark.driver.memory: 1G
spark.driver.cores: 1
spark.executor.memory: 3G
spark.executor.instances: 4
spark.executor.cores: 2
spark.yarn.queue: default
spark.serializer: org.apache.spark.serializer.KryoSerializer
spark.streaming.batchDuration: 4000
spark.streaming.backpressure.enabled: false
spark.streaming.unpersist: false
spark.streaming.blockInterval: 500
spark.streaming.kafka.maxRatePerPartition: 3000
spark.streaming.timeout: -1
spark.streaming.unpersist: false
spark.streaming.kafka.maxRetries: 3
spark.streaming.ui.retainedBatches: 200
spark.streaming.receiver.writeAheadLog.enable: false
spark.ui.port: 4050

controllerServiceConfigurations:

- controllerService: elasticsearch_service
component: com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_

→˓ClientService
type: service
documentation: elasticsearch 2.4.0 service implementation
configuration:

hosts: sandbox:9300
cluster.name: elasticsearch
batch.size: 20000

streamConfigurations:

12 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

Stream 1 : parse incoming apache log lines

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper
hosts. Here the stream will read all the logs sent in logisland_raw topic and push the processing output into
logisland_events topic.

Note: We want to specify an Avro output schema to validate our ouput records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

parsing
- stream: parsing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that links
configuration:
kafka.input.topics: logisland_raw
kafka.output.topics: logisland_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
avro.output.schema: >

{ "version":1,
"type": "record",
"name": "com.hurence.logisland.record.apache_log",
"fields": [

{ "name": "record_errors", "type": [{"type": "array", "items": "string"}
→˓,"null"] },

{ "name": "record_raw_key", "type": ["string","null"] },
{ "name": "record_raw_value", "type": ["string","null"] },
{ "name": "record_id", "type": ["string"] },
{ "name": "record_time", "type": ["long"] },
{ "name": "record_type", "type": ["string"] },
{ "name": "src_ip", "type": ["string","null"] },
{ "name": "http_method", "type": ["string","null"] },
{ "name": "bytes_out", "type": ["long","null"] },
{ "name": "http_query", "type": ["string","null"] },
{ "name": "http_version","type": ["string","null"] },
{ "name": "http_status", "type": ["string","null"] },
{ "name": "identd", "type": ["string","null"] },
{ "name": "user", "type": ["string","null"] }]}

kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

processorConfigurations:

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of
fields.

parse apache logs
- processor: apache_parser

component: com.hurence.logisland.processor.SplitText

1.5. Tutorials 13

logisland Documentation, Release 0.10.0-rc1

type: parser
documentation: a parser that produce events from an apache log REGEX
configuration:
value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+

→˓"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,

→˓http_status,bytes_out

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will be
parsed as an event which will be pushed back to Kafka in the logisland_events topic.

Stream 2 :Index the processed records to Elasticsearch

The second Kafka stream will handle Records pushed into logisland_events topic to index them into elastic-
search

- stream: indexing_stream
component: com.hurence.logisland.processor.chain.KafkaRecordStream
type: processor
documentation: a processor that pushes events to ES
configuration:
kafka.input.topics: logisland_events
kafka.output.topics: none
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:

add to elasticsearch
- processor: es_publisher

component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
type: processor
documentation: a processor that trace the processed events
configuration:

elasticsearch.client.service: elasticsearch_service
default.index: logisland
default.type: event
timebased.index: yesterday
es.index.field: search_index
es.type.field: record_type

3. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic but there’s a super useful tool in
the Kafka ecosystem : kafkacat, a generic command line non-JVM Apache Kafka producer and consumer which can
be easily installed.

14 Chapter 1. Contents:

https://github.com/edenhill/kafkacat

logisland Documentation, Release 0.10.0-rc1

If you don’t have your own httpd logs available, you can use some freely available log files from NASA-HTTP web
site access:

• Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed

• Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed

Let’s send the first 500000 lines of NASA http access over July 1995 to LogIsland with kafkacat to logisland_raw
Kafka topic

docker exec -ti logisland bash
cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -500000 NASA_access_log_Jul95 | kafkacat -b sandbox:9092 -t logisland_raw

4. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process your data

Another tool can help you to tweak and monitor your processing http://sandbox:9000/

1.5. Tutorials 15

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz
http://sandbox:4050/streaming/
http://sandbox:9000

logisland Documentation, Release 0.10.0-rc1

5. Use Kibana to inspect the logs

Open up your browser and go to http://sandbox:5601/ and you should be able to explore your apache logs.

Configure a new index pattern with logisland.* as the pattern name and @timestamp as the time value field.

Then if you go to Explore panel for the latest 15’ time window you’ll only see logisland process_metrics events which
give you insights about the processing bandwidth of your streams.

16 Chapter 1. Contents:

http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:'1995-05-08T12:14:53.216Z',mode:absolute,to:'1995-11-25T05:30:52.010Z'))&_a=(columns:!(_source),filters:!(),index:'li-*',interval:auto,query:(query_string:(analyze_wildcard:!t,query:usa)),sort:!('@timestamp',desc),vis:(aggs:!((params:(field:host,orderBy:'2',size:20),schema:segment,type:terms),(id:'2',schema:metric,type:count)),type:histogram))&indexPattern=li-*&type=histogram

logisland Documentation, Release 0.10.0-rc1

As we explore data logs from july 1995 we’ll have to select an absolute time filter from 1995-06-30 to 1995-07-08 to
see the events.

1.5. Tutorials 17

logisland Documentation, Release 0.10.0-rc1

Index Apache logs Enrichment

In the following tutorial we’ll drive you through the process of enriching Apache logs with LogIsland platform.

One of the first step when treating web access logs is to extract information from the User-Agent header string, in
order to be able to classify traffic. The User-Agent string is part of the access logs from the web server (this is the last
field in the example below).

That string is packed with information from the visitor, when you know how to interpret it. However, the User-Agent
string is not based on any standard, and it is not trivial to extract meaningful information from it. LogIsland provides
a processor, based on the YAUAA library, that simplifies that treatement.

We will reuse the Docker container hosting all the LogIsland services from the previous tutorial, and add the User-
Agent processor to the stream.

Note: You can download the latest release of logisland and the YAML configuration file for this tutorial which can

18 Chapter 1. Contents:

http://github.com/nielsbasjes/yauaa
https://github.com/Hurence/logisland/releases
https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/user-agent-logs.yml

logisland Documentation, Release 0.10.0-rc1

be also found under $LOGISLAND_HOME/conf directory.

1. Start LogIsland as a Docker container

LogIsland is packaged as a Docker container that you can build yourself or pull from Docker Hub.

You can find the steps to start the Docker image and start the LogIsland server in the previous tutorial. However, you’ll
start the server with a different configuration file (that already includes the User-Agent processor)

Stream 1 : modify the stream to analyze the User-Agent string

Note: You can either apply the modifications from this section to the file conf/index-apache-logs.yml ot directly use
the file conf/user-agent-logs.yml that already includes them.

The stream needs to be modified to

* modify the regex to add the referer and the User-Agent strings for the SplitText
→˓processor

* modify the Avro schema to include the new fields returned by the UserAgentProcessor

* include the the processing of the User-Agent string after the parsing of the logs

The example below shows how to include all of the fields supported by the processor.

Note: It is possible to remove unwanted fields from both the processor configuration and the Avro schema

parsing
- stream: parsing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that links
configuration:
kafka.input.topics: logisland_raw
kafka.output.topics: logisland_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
avro.output.schema: >

{ "version":1,
"type": "record",
"name": "com.hurence.logisland.record.apache_log",
"fields": [

{ "name": "record_errors", "type": [{"type": "array", "items": "string"}
→˓,"null"] },

{ "name": "record_raw_key", "type": ["string","null"] },
{ "name": "record_raw_value", "type": ["string","null"] },
{ "name": "record_id", "type": ["string"] },
{ "name": "record_time", "type": ["long"] },
{ "name": "record_type", "type": ["string"] },
{ "name": "src_ip", "type": ["string","null"] },
{ "name": "http_method", "type": ["string","null"] },

1.5. Tutorials 19

logisland Documentation, Release 0.10.0-rc1

{ "name": "bytes_out", "type": ["long","null"] },
{ "name": "http_query", "type": ["string","null"] },
{ "name": "http_version","type": ["string","null"] },
{ "name": "http_status", "type": ["string","null"] },
{ "name": "identd", "type": ["string","null"] },
{ "name": "user", "type": ["string","null"] } ,
{ "name": "http_user_agent", "type": ["string","null"] },
{ "name": "http_referer", "type": ["string","null"] },
{ "name": "DeviceClass", "type": ["string","null"] },
{ "name": "DeviceName", "type": ["string","null"] },
{ "name": "DeviceBrand", "type": ["string","null"] },
{ "name": "DeviceCpu", "type": ["string","null"] },
{ "name": "DeviceFirmwareVersion", "type": ["string","null"] },
{ "name": "DeviceVersion", "type": ["string","null"] },
{ "name": "OperatingSystemClass", "type": ["string","null"] },
{ "name": "OperatingSystemName", "type": ["string","null"] },
{ "name": "OperatingSystemVersion", "type": ["string","null"] },
{ "name": "OperatingSystemNameVersion", "type": ["string","null"] },
{ "name": "OperatingSystemVersionBuild", "type": ["string","null"] },
{ "name": "LayoutEngineClass", "type": ["string","null"] },
{ "name": "LayoutEngineName", "type": ["string","null"] },
{ "name": "LayoutEngineVersion", "type": ["string","null"] },
{ "name": "LayoutEngineVersionMajor", "type": ["string","null"] },
{ "name": "LayoutEngineNameVersion", "type": ["string","null"] },
{ "name": "LayoutEngineNameVersionMajor", "type": ["string","null"] },
{ "name": "LayoutEngineBuild", "type": ["string","null"] },
{ "name": "AgentClass", "type": ["string","null"] },
{ "name": "AgentName", "type": ["string","null"] },
{ "name": "AgentVersion", "type": ["string","null"] },
{ "name": "AgentVersionMajor", "type": ["string","null"] },
{ "name": "AgentNameVersion", "type": ["string","null"] },
{ "name": "AgentNameVersionMajor", "type": ["string","null"] },
{ "name": "AgentBuild", "type": ["string","null"] },
{ "name": "AgentLanguage", "type": ["string","null"] },
{ "name": "AgentLanguageCode", "type": ["string","null"] },
{ "name": "AgentInformationEmail", "type": ["string","null"] },
{ "name": "AgentInformationUrl", "type": ["string","null"] },
{ "name": "AgentSecurity", "type": ["string","null"] },
{ "name": "AgentUuid", "type": ["string","null"] },
{ "name": "FacebookCarrier", "type": ["string","null"] },
{ "name": "FacebookDeviceClass", "type": ["string","null"] },
{ "name": "FacebookDeviceName", "type": ["string","null"] },
{ "name": "FacebookDeviceVersion", "type": ["string","null"] },
{ "name": "FacebookFBOP", "type": ["string","null"] },
{ "name": "FacebookFBSS", "type": ["string","null"] },
{ "name": "FacebookOperatingSystemName", "type": ["string","null"] },
{ "name": "FacebookOperatingSystemVersion", "type": ["string","null"] },
{ "name": "Anonymized", "type": ["string","null"] },
{ "name": "HackerAttackVector", "type": ["string","null"] },
{ "name": "HackerToolkit", "type": ["string","null"] },
{ "name": "KoboAffiliate", "type": ["string","null"] },
{ "name": "KoboPlatformId", "type": ["string","null"] },
{ "name": "IECompatibilityVersion", "type": ["string","null"] },
{ "name": "IECompatibilityVersionMajor", "type": ["string","null"] },
{ "name": "IECompatibilityNameVersion", "type": ["string","null"] },
{ "name": "IECompatibilityNameVersionMajor", "type": ["string","null"] },
{ "name": "Carrier", "type": ["string","null"] },
{ "name": "GSAInstallationID", "type": ["string","null"] },

20 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

{ "name": "WebviewAppName", "type": ["string","null"] },
{ "name": "WebviewAppNameVersionMajor", "type": ["string","null"] },
{ "name": "WebviewAppVersion", "type": ["string","null"] },
{ "name": "WebviewAppVersionMajor", "type": ["string","null"]}]}

kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

processorConfigurations:

parse apache logs
- processor: apache_parser

component: com.hurence.logisland.processor.SplitText
type: parser
documentation: a parser that produce events from an apache log REGEX
configuration:

record.type: apache_log
Previous regex
#value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+

→˓"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
#value.fields: src_ip,identd,user,record_time,http_method,http_query,http_

→˓version,http_status,bytes_out
Updated regex
value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+

→˓"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)\s+"(\S+)"\s+"([^\"]+)"
value.fields: src_ip,identd,user,record_time,http_method,http_query,http_

→˓version,http_status,bytes_out,http_referer,http_user_agent

- processor: user_agent_analyzer
component: com.hurence.logisland.processor.useragent.ParseUserAgent
type: processor
documentation: decompose the user_agent field into meaningful attributes
configuration:

useragent.field: http_user_agent
fields: DeviceClass,DeviceName,DeviceBrand,DeviceCpu,DeviceFirmwareVersion,

→˓DeviceVersion,OperatingSystemClass,OperatingSystemName,OperatingSystemVersion,
→˓OperatingSystemNameVersion,OperatingSystemVersionBuild,LayoutEngineClass,
→˓LayoutEngineName,LayoutEngineVersion,LayoutEngineVersionMajor,
→˓LayoutEngineNameVersion,LayoutEngineNameVersionMajor,LayoutEngineBuild,AgentClass,
→˓AgentName,AgentVersion,AgentVersionMajor,AgentNameVersion,AgentNameVersionMajor,
→˓AgentBuild,AgentLanguage,AgentLanguageCode,AgentInformationEmail,
→˓AgentInformationUrl,AgentSecurity,AgentUuid,FacebookCarrier,FacebookDeviceClass,
→˓FacebookDeviceName,FacebookDeviceVersion,FacebookFBOP,FacebookFBSS,
→˓FacebookOperatingSystemName,FacebookOperatingSystemVersion,Anonymized,
→˓HackerAttackVector,HackerToolkit,KoboAffiliate,KoboPlatformId,
→˓IECompatibilityVersion,IECompatibilityVersionMajor,IECompatibilityNameVersion,
→˓IECompatibilityNameVersionMajor,GSAInstallationID,WebviewAppName,
→˓WebviewAppNameVersionMajor,WebviewAppVersion,WebviewAppVersionMajor

Once the configuration file is updated, LogIsland must be restarted with that new configuration file.

bin/logisland.sh --conf <new_configuration_file>

2. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

1.5. Tutorials 21

logisland Documentation, Release 0.10.0-rc1

We could setup a logstash or flume agent to load some apache logs into a kafka topic but there’s a super useful tool in
the Kafka ecosystem : kafkacat, a generic command line non-JVM Apache Kafka producer and consumer which can
be easily installed (and is already present in the docker image).

If you don’t have your own httpd logs available, you can use some freely available log files from Elastic web site

Let’s send the first 500000 lines of access log to LogIsland with kafkacat to logisland_raw Kafka topic

docker exec -ti logisland bash
cd /tmp
wget https://raw.githubusercontent.com/elastic/examples/master/ElasticStack_apache/
→˓apache_logs
head -500000 apache_logs | kafkacat -b sandbox:9092 -t logisland_raw

3. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process your data

Another tool can help you to tweak and monitor your processing http://sandbox:9000/

22 Chapter 1. Contents:

https://github.com/edenhill/kafkacat
https://raw.githubusercontent.com/elastic/examples/master/ElasticStack_apache/apache_logs
http://sandbox:4050/streaming/
http://sandbox:9000

logisland Documentation, Release 0.10.0-rc1

4. Use Kibana to inspect the logs

You’ve completed the enrichment of your logs using the User-Agent processor. The logs are now loaded into elastic-
Search, in the following form :

curl -XGET http://localhost:9200/logisland.*/_search?pretty

{

"_index": "logisland.2017.03.21",
"_type": "apache_log",
"_id": "4ca6a8b5-1a60-421e-9ae9-6c30330e497e",
"_score": 1.0,
"_source": {

"@timestamp": "2015-05-17T10:05:43Z",
"agentbuild": "Unknown",
"agentclass": "Browser",
"agentinformationemail": "Unknown",
"agentinformationurl": "Unknown",
"agentlanguage": "Unknown",
"agentlanguagecode": "Unknown",
"agentname": "Chrome",
"agentnameversion": "Chrome 32.0.1700.77",
"agentnameversionmajor": "Chrome 32",
"agentsecurity": "Unknown",
"agentuuid": "Unknown",
"agentversion": "32.0.1700.77",
"agentversionmajor": "32",
"anonymized": "Unknown",
"devicebrand": "Apple",
"deviceclass": "Desktop",
"devicecpu": "Intel",
"devicefirmwareversion": "Unknown",
"devicename": "Apple Macintosh",
"deviceversion": "Unknown",
"facebookcarrier": "Unknown",
"facebookdeviceclass": "Unknown",
"facebookdevicename": "Unknown",
"facebookdeviceversion": "Unknown",
"facebookfbop": "Unknown",
"facebookfbss": "Unknown",
"facebookoperatingsystemname": "Unknown",

1.5. Tutorials 23

logisland Documentation, Release 0.10.0-rc1

"facebookoperatingsystemversion": "Unknown",
"gsainstallationid": "Unknown",
"hackerattackvector": "Unknown",
"hackertoolkit": "Unknown",
"iecompatibilitynameversion": "Unknown",
"iecompatibilitynameversionmajor": "Unknown",
"iecompatibilityversion": "Unknown",
"iecompatibilityversionmajor": "Unknown",
"koboaffiliate": "Unknown",
"koboplatformid": "Unknown",
"layoutenginebuild": "Unknown",
"layoutengineclass": "Browser",
"layoutenginename": "Blink",
"layoutenginenameversion": "Blink 32.0",
"layoutenginenameversionmajor": "Blink 32",
"layoutengineversion": "32.0",
"layoutengineversionmajor": "32",
"operatingsystemclass": "Desktop",
"operatingsystemname": "Mac OS X",
"operatingsystemnameversion": "Mac OS X 10.9.1",
"operatingsystemversion": "10.9.1",
"operatingsystemversionbuild": "Unknown",
"webviewappname": "Unknown",
"webviewappnameversionmajor": "Unknown",
"webviewappversion": "Unknown",
"webviewappversionmajor": "Unknown",
"bytes_out": 171717,
"http_method": "GET",
"http_query": "/presentations/logstash-monitorama-2013/images/kibana-

→˓dashboard3.png",
"http_referer": "http://semicomplete.com/presentations/logstash-monitorama-

→˓2013/",
"http_status": "200",
"http_user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1)

→˓AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36",
"http_version": "HTTP/1.1",
"identd": "-",
"record_id": "4ca6a8b5-1a60-421e-9ae9-6c30330e497e",
"record_raw_value": "83.149.9.216 - - [17/May/2015:10:05:43 +0000] \"GET /

→˓presentations/logstash-monitorama-2013/images/kibana-dashboard3.png HTTP/1.1\" 200
→˓171717 \"http://semicomplete.com/presentations/logstash-monitorama-2013/\" \
→˓"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like
→˓Gecko) Chrome/32.0.1700.77 Safari/537.36\"",

"record_time": 1431857143000,
"record_type": "apache_log",
"src_ip": "83.149.9.216",
"user": "-"

}
}

You can now browse your data in Kibana and build great dashboards

Alerts & Query Matching

In the following tutorial we’ll learn how to generate time window metrics on some http traffic (apache log records)
and how to raise custom alerts based on lucene matching query criterion.

24 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

We assume that you already know how to parse and ingest Apache logs into logisland. If it’s not the case please refer
to the previous Apache logs indexing tutorial. We will first add an SQLAggregator Stream to compute some metrics
and then add a MatchQuery Processor.

Note: You can download the latest release of logisland and the YAML configuration file for this tutorial which can
be also found under $LOGISLAND_HOME/conf directory.

1. Setup SQL Aggregation Stream

Our application will be composed of 2 streams, the first one use a KafkaRecordStreamSQLAggregator. This stream
defines input/output topics names as well as Serializers, avro schema.

Note: The Avro schema is set for the input topic and must be same as the avro schema of the output topic for the
stream that produces the records (please refer to Index Apache logs tutorial

The most important part of the KafkaRecordStreamSQLAggregator is its sql.query property which defines a query to
apply on the incoming records for the given time window.

The following SQL query will be applied

SELECT count(*) AS connections_count, avg(bytes_out) AS avg_bytes_out, src_ip,
→˓first(record_time) as record_time
FROM logisland_events
GROUP BY src_ip
ORDER BY connections_count DESC
LIMIT 20

which will consider logisland_events topic as SQL table and create 20 output Record with the fields
avg_bytes_out, src_ip & record_time. the statement with record_time will ensure that the created Records will corre-
spond to the effective input event time (not the actual time).

- stream: metrics_by_host
component: com.hurence.logisland.stream.spark.KafkaRecordStreamSQLAggregator
type: stream
documentation: a processor that links
configuration:
kafka.input.topics: logisland_events
kafka.output.topics: logisland_aggregations
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1
avro.input.schema: >

{ "version":1,
"type": "record",
"name": "com.hurence.logisland.record.apache_log",
"fields": [

{ "name": "record_errors", "type": [{"type": "array", "items": "string"}
→˓,"null"] },

1.5. Tutorials 25

https://github.com/Hurence/logisland/releases
https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/query-matching.yml
http://avro.apache.org/docs/1.7.7/spec.html

logisland Documentation, Release 0.10.0-rc1

{ "name": "record_raw_key", "type": ["string","null"] },
{ "name": "record_raw_value", "type": ["string","null"] },
{ "name": "record_id", "type": ["string"] },
{ "name": "record_time", "type": ["long"] },
{ "name": "record_type", "type": ["string"] },
{ "name": "src_ip", "type": ["string","null"] },
{ "name": "http_method", "type": ["string","null"] },
{ "name": "bytes_out", "type": ["long","null"] },
{ "name": "http_query", "type": ["string","null"] },
{ "name": "http_version","type": ["string","null"] },
{ "name": "http_status", "type": ["string","null"] },
{ "name": "identd", "type": ["string","null"] },
{ "name": "user", "type": ["string","null"] }]}

sql.query: >
SELECT count(*) AS connections_count, avg(bytes_out) AS avg_bytes_out, src_ip
FROM logisland_events
GROUP BY src_ip
ORDER BY event_count DESC
LIMIT 20

max.results.count: 1000
output.record.type: top_client_metrics

Here we will compute every x seconds, the top twenty src_ip for connections count. The result of the query will
be pushed into to logisland_aggregations topic as new top_client_metrics Record containing connections_count and
avg_bytes_out fields.

2. Setup Query matching Stream on log Records

The second stream makes use of the KafkaRecordStreamParallelProcessing Stream with a MatchQuery Processor.
This processor provides user with dynamic query registration. This queries are expressed in the Lucene syntax.

Note: Please read the Lucene syntax guide for supported operations.

We’ll use 2 streams for query matching because we will handle 2 kind of Records. The first one will send an alert
when a particular host (src_ip:199.0.2.27) will make a connection and anywhen someone from .edu domain makes a
connection (src_ip:.edu).

match threshold queries
- stream: query_matching_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that match query in parrallel
configuration:
kafka.input.topics: logisland_events
kafka.output.topics: logisland_alerts
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:

26 Chapter 1. Contents:

https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description

logisland Documentation, Release 0.10.0-rc1

- processor: match_query
component: com.hurence.logisland.processor.MatchQuery
type: processor
documentation: a parser that produce events from an apache log REGEX
configuration:

blacklisted_host: src_ip:slip-5.io.com
edu_host: src_ip:edu
output.record.type: connection_alert

3. Setup Query matching Stream

The third one will match numeric fields on sql aggregates computed in the very first stream in this tutorial.

match threshold queries
- stream: query_matching_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that match query in parrallel
configuration:
kafka.input.topics: logisland_aggregations
kafka.output.topics: logisland_alerts
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:
- processor: match_query

component: com.hurence.logisland.processor.MatchQuery
type: processor
documentation: a parser that produce events from an apache log REGEX
configuration:

numeric.fields: bytes_out,connections_count
too_much_bandwidth: average_bytes:[100 TO 50000]
too_many_connections: connections_count:[500 TO 1000000]
output.record.type: threshold_alert

4. Start logisland application

Connect a shell to your logisland container to launch the following stream processing job previously defined.

docker exec -ti logisland bash

#launch logisland streams
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-apache-logs.yml
bin/logisland.sh --conf conf/query-matching.yml

send logs to kafka
head 500000 NASA_access_log_Jul95 | kafkacat -b sandbox:9092 -t logisland_raw

1.5. Tutorials 27

logisland Documentation, Release 0.10.0-rc1

5. Check your alerts with Kibana

Open up your browser and go to http://sandbox:5601/ and you should be able to explore your apache logs.

As we explore data logs from july 1995 we’ll have to select an absolute time filter from 1995-06-30 to 1995-07-08 to
see the events.

you can filter your events with record_type:connection_alert to get 71733 connections alerts matching
your query

28 Chapter 1. Contents:

http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:'1995-05-08T12:14:53.216Z',mode:absolute,to:'1995-11-25T05:30:52.010Z'))&_a=(columns:!(_source),filters:!(),index:'li-*',interval:auto,query:(query_string:(analyze_wildcard:!t,query:usa)),sort:!('@timestamp',desc),vis:(aggs:!((params:(field:host,orderBy:'2',size:20),schema:segment,type:terms),(id:'2',schema:metric,type:count)),type:histogram))&indexPattern=li-*&type=histogram

logisland Documentation, Release 0.10.0-rc1

by adding another filter on alert_match_name:blacklisted_host you’ll only get request from slip-5.
io.com which is a host we where monitoring.

1.5. Tutorials 29

logisland Documentation, Release 0.10.0-rc1

if we filter now on threshold alerts whith record_type:threshold_alert you’ll get the 13 src_ip that have
been catched by the threshold query.

30 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

Time series sampling & Outliers detection

In the following tutorial we’ll handle time series data from a sensor. We’ll see how sample the datapoints in a visually
non destructive way and

We assume that you are already familiar with logisland platform and that you have successfully done the previous
tutorials.

Note: You can download the latest release of logisland and the YAML configuration file for this tutorial which can
be also found under $LOGISLAND_HOME/conf directory.

1. Setup the time series collection Stream

The first Stream use a KafkaRecordStreamParallelProcessing and chain of a SplitText

1.5. Tutorials 31

https://github.com/Hurence/logisland/releases
https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/outlier-detection.yml

logisland Documentation, Release 0.10.0-rc1

The first Processor simply parse the csv lines while the second index them into the search engine. Please note the
output schema.

parsing time series
- stream: parsing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that links
configuration:
kafka.input.topics: logisland_ts_raw
kafka.output.topics: logisland_ts_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
avro.output.schema: >

{ "version":1,
"type": "record",
"name": "com.hurence.logisland.record.cpu_usage",
"fields": [

{ "name": "record_errors", "type": [{"type": "array", "items": "string"}
→˓,"null"] },

{ "name": "record_raw_key", "type": ["string","null"] },
{ "name": "record_raw_value", "type": ["string","null"] },
{ "name": "record_id", "type": ["string"] },
{ "name": "record_time", "type": ["long"] },
{ "name": "record_type", "type": ["string"] },
{ "name": "record_value", "type": ["string","null"] }]}

kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

processorConfigurations:
- processor: apache_parser

component: com.hurence.logisland.processor.SplitText
type: parser
documentation: a parser that produce events from an apache log REGEX
configuration:

record.type: apache_log
value.regex: (\S+),(\S+)
value.fields: record_time,record_value

2. Setup the Outliers detection Stream

The first Stream use a KafkaRecordStreamParallelProcessing and a DetectOutliers Processor

Note: It’s important to see that we perform outliers detection in parallel. So if we would perform this detection for
a particular grouping of record we would have used a KafkaRecordStreamSQLAggregator with a GROUP BY clause
instead.

detect outliers
- stream: detect_outliers

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream

32 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

documentation: a processor that match query in parrallel
configuration:
kafka.input.topics: logisland_sensor_events
kafka.output.topics: logisland_sensor_outliers_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:
- processor: match_query

component: com.hurence.logisland.processor.DetectOutliers
type: processor
documentation: a processor that detection something exotic in a continuous time

→˓series values
configuration:

rotation.policy.type: by_amount
rotation.policy.amount: 100
rotation.policy.unit: points
chunking.policy.type: by_amount
chunking.policy.amount: 10
chunking.policy.unit: points
global.statistics.min: -100000
min.amount.to.predict: 100
zscore.cutoffs.normal: 3.5
zscore.cutoffs.moderate: 5
record.value.field: record_value
record.time.field: record_time
output.record.type: sensor_outlier

3. Setup the time series Sampling Stream

The first Stream use a KafkaRecordStreamParallelProcessing and a RecordSampler Processor

sample time series
- stream: detect_outliers

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that match query in parrallel
configuration:
kafka.input.topics: logisland_sensor_events
kafka.output.topics: logisland_sensor_sampled_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:
- processor: sampler

1.5. Tutorials 33

logisland Documentation, Release 0.10.0-rc1

component: com.hurence.logisland.processor.SampleRecords
type: processor
documentation: a processor that reduce the number of time series values
configuration:

record.value.field: record_value
record.time.field: record_time
sampling.algorithm: average
sampling.parameter: 10

4. Setup the indexing Stream

The last Stream use a KafkaRecordStreamParallelProcessing and chain of a SplitText and a BulkAddElasticsearch for
indexing the whole records

index records
- stream: indexing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: a processor that links
configuration:
kafka.input.topics: logisland_sensor_events,logisland_sensor_outliers_events,

→˓logisland_sensor_sampled_events
kafka.output.topics: none
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: none
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 4
kafka.topic.default.replicationFactor: 1

processorConfigurations:
- processor: es_publisher

component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
type: processor
documentation: a processor that trace the processed events
configuration:

elasticsearch.client.service: elasticsearch_service
default.index: logisland
default.type: event
timebased.index: yesterday
es.index.field: search_index
es.type.field: record_type

4. Start logisland application

Connect a shell to your logisland container to launch the following stream processing job previously defined.

docker exec -ti logisland bash

#launch logisland streams
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/outlier-detection.yml

34 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

send logs to kafka
cat cpu_utilization_asg_misconfiguration.csv | kafkacat -b sandbox:9092 -P -t
→˓logisland_sensor_raw

5. Check your alerts with Kibana

Bro/Logisland integration - Indexing Bro events

Bro and Logisland

Bro is a Network IDS (Intrusion Detection System) that can be deployed to monitor your infrastructure. Bro listens to
the packets of your network and generates high level events from them. It can for instance generate an event each time
there is a connection, a file transfer, a DNS query...anything that can be deduced from packet analysis.

Through its out-of-the-box ParseBroEvent processor, Logisland integrates with Bro and is able to receive and handle
Bro events and notices coming from Bro. By analyzing those events with Logisland, you may do some correlations
and for instance generate some higher level alarms or do whatever you want, in a scalable manner, like monitoring a
huge infrastructure with hundreds of machines.

Bro comes with a scripting language that allows to also generate some higher level events from other events corre-
lations. Bro calls such events ‘notices’. For instance a notice can be generated when a user or bot tries to guess a
password with brute forcing. Logisland is also able to receive and handle those notices.

For the purpose of this tutorial, we will show you how to receive Bro events and notices in Logisland and how to
index them in ElasticSearch for network audit purpose. But you can imagine to plug any Logisland processors after
the ParseBroEvent processor to build your own monitoring system or any other application based on Bro events and
notices handling.

Tutorial environment

This tutorial will give you a better understanding of how Bro and Logisland integrate together.

We will start two Docker containers:

• 1 container hosting all the LogIsland services

• 1 container hosting Bro pre-loaded with Bro-Kafka plugin

We will launch two streaming processes and configure Bro to send events and notices to the Logisland system so that
they are indexed in ElasticSearch.

It is important to understand that in a production environment Bro would be installed on machines where he is relevant
for your infrastructure and will be configured to remotely point to the Logisland service (Kafka). But for easiness of
this tutorial, we provide you with an easy mean of generating Bro events through our Bro Docker image.

This tutorial will guide you through the process of configuring Logisland for treating Bro events, and configuring Bro
of the second container to send the events and notices to the Logisland service in the first container.

Note: You can download the latest release of Logisland and the YAML configuration file for this tutorial which can
be also found under $LOGISLAND_HOME/conf directory in the Logsiland container.

1.5. Tutorials 35

https://www.bro.org
https://en.wikipedia.org/wiki/Intrusion_detection_system
https://github.com/Hurence/logisland/releases
https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-bro-events.yml

logisland Documentation, Release 0.10.0-rc1

1. Start the Docker container with LogIsland

LogIsland is packaged as a Docker image that you can build yourself or pull from Docker Hub. The docker image is
built from a CentOs image with the following components already installed (among some others not useful for this
tutorial):

• Kafka

• Spark

• Elasticsearch

• LogIsland

Pull the image from Docker Repository (it may take some time)

docker pull hurence/logisland

You should be aware that this Docker container is quite eager in RAM and will need at least 8G of memory to run
smoothly. Now run the container

run container
docker run \

-it \
-p 80:80 \
-p 8080:8080 \
-p 3000:3000 \
-p 9200-9300:9200-9300 \
-p 5601:5601 \
-p 2181:2181 \
-p 9092:9092 \
-p 9000:9000 \
-p 4050-4060:4050-4060 \
--name logisland \
-h sandbox \
hurence/logisland bash

get container ip
docker inspect logisland | grep IPAddress

or if your are on mac os
docker-machine ip default

You should add an entry for sandbox (with the container ip) in your /etc/hosts as it will be easier to access to all
web services in Logisland running container. Or you can use ‘localhost’ instead of ‘sandbox’ where applicable.

Note: If you have your own Spark and Kafka cluster, you can download the latest release and unzip on an edge node.

2. Transform Bro events into Logisland records

For this tutorial we will receive Bro events and notices and send them to Elastiscearch. The configuration file for
this tutorial is already present in the container at $LOGISLAND_HOME/conf/index-bro-events.yml and its
content can be viewed here . Within the following steps, we will go through this configuration file and detail the
sections and what they do.

Connect a shell to your Logisland container to launch a Logisland instance with the following streaming jobs:

36 Chapter 1. Contents:

https://github.com/Hurence/logisland/tree/master/logisland-docker#build-your-own
https://github.com/Hurence/logisland/releases
https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-bro-events.yml

logisland Documentation, Release 0.10.0-rc1

docker exec -ti logisland bash
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-bro-events.yml

Note: Logisland is now started. If you want to go straight forward and do not care for the moment about the
configuration file details, you can now skip the following sections and directly go to the 3. Start the Docker container
with Bro section.

Setup Spark/Kafka streaming engine

An Engine is needed to handle the stream processing. The conf/index-bro-events.yml configuration file
defines a stream processing job setup. The first section configures the Spark engine (we will use a KafkaStreamPro-
cessingEngine) as well as an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Index Bro events with LogIsland
configuration:
spark.app.name: IndexBroEventsDemo
spark.master: local[4]
spark.driver.memory: 1G
spark.driver.cores: 1
spark.executor.memory: 2G
spark.executor.instances: 4
spark.executor.cores: 2
spark.yarn.queue: default
spark.yarn.maxAppAttempts: 4
spark.yarn.am.attemptFailuresValidityInterval: 1h
spark.yarn.max.executor.failures: 20
spark.yarn.executor.failuresValidityInterval: 1h
spark.task.maxFailures: 8
spark.serializer: org.apache.spark.serializer.KryoSerializer
spark.streaming.batchDuration: 4000
spark.streaming.backpressure.enabled: false
spark.streaming.unpersist: false
spark.streaming.blockInterval: 500
spark.streaming.kafka.maxRatePerPartition: 3000
spark.streaming.timeout: -1
spark.streaming.unpersist: false
spark.streaming.kafka.maxRetries: 3
spark.streaming.ui.retainedBatches: 200
spark.streaming.receiver.writeAheadLog.enable: false
spark.ui.port: 4050

controllerServiceConfigurations:

- controllerService: elasticsearch_service
component: com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_

→˓ClientService
type: service
documentation: elasticsearch 2.4.0 service implementation
configuration:

hosts: sandbox:9300

1.5. Tutorials 37

logisland Documentation, Release 0.10.0-rc1

cluster.name: elasticsearch
batch.size: 20000

streamConfigurations:

Stream 1: Parse incoming Bro events

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper
hosts. Here the stream will read all the Bro events and notices sent in the bro topic and push the processing output
into the logisland_events topic.

Parsing
- stream: parsing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: A processor chain that transforms Bro events into Logisland records
configuration:
kafka.input.topics: bro
kafka.output.topics: logisland_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:

Within this stream there is a single processor in the processor chain: the Bro processor. It takes an incoming Bro
event/notice JSON document and computes a Logisland Record as a sequence of fields that were contained in the
JSON document.

Transform Bro events into Logisland records
- processor: Bro adaptor

component: com.hurence.logisland.processor.bro.ParseBroEvent
type: parser
documentation: A processor that transforms Bro events into LogIsland events

This stream will process Bro events as soon as they will be queued into the bro Kafka topic. Each log will be parsed
as an event which will be pushed back to Kafka in the logisland_events topic.

Stream 2: Index the processed records into Elasticsearch

The second Kafka stream will handle Records pushed into the logisland_events topic to index them into
ElasticSearch. So there is no need to define an output topic. The input topic is enough:

Indexing
- stream: indexing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: processor
documentation: A processor chain that pushes bro events to ES
configuration:

38 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

kafka.input.topics: logisland_events
kafka.output.topics: none
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: none
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:

The only processor in the processor chain of this stream is the BulkAddElasticsearch processor.

Bulk add into ElasticSearch
- processor: ES Publisher

component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
type: processor
documentation: A processor that pushes Bro events into ES
configuration:
elasticsearch.client.service: elasticsearch_service
default.index: bro
default.type: events
timebased.index: today
es.index.field: search_index
es.type.field: record_type

The default.index: bro configuration parameter tells the processor to index events into an index starting with
the bro string. The timebased.index: today configuration parameter tells the processor to use the current
date after the index prefix. Thus the index name is of the form /bro.2017.02.23.

Finally, the es.type.field: record_type configuration parameter tells the processor to use the record field
record_type of the incoming record to determine the ElasticSearch type to use within the index.

We will come back to these settings and what they do in the section where we see examples of events to illustrate the
workflow.

3. Start the Docker container with Bro

For this tutorial, we provide Bro as a Docker image that you can build yourself or pull from Docker Hub. The docker
image is built from an Ubuntu image with the following components already installed:

• Bro

• Bro-Kafka plugin

Note: Due to the fact that Bro requires a Kafka plugin to be able to send events to Kafka and that building the Bro-
Kafka plugin requires some substantial steps (need Bro sources), for this tutorial, we are only focusing on configuring
Bro, and consider it already compiled and installed with its Bro-Kafka plugin (this is the case in our Bro docker image).
But looking at the Dockerfile we made to build the Bro Docker image and which is located here, you will have an idea
on how to install Bro and Bro-Kafka plugin binaries on your own systems.

Pull the Bro image from Docker Repository:

1.5. Tutorials 39

https://github.com/Hurence/logisland/tree/master/logisland-docker/bro
https://github.com/Hurence/logisland/tree/master/logisland-docker/bro/Dockerfile

logisland Documentation, Release 0.10.0-rc1

Warning: If the Bro image is not yet available in the Docker Hub: please build our Bro Docker image yourself
as described in the link above for the moment.

docker pull hurence/bro

Start a Bro container from the Bro image:

run container
docker run -it --name bro -h bro hurence/bro

get container ip
docker inspect bro | grep IPAddress

or if your are on mac os
docker-machine ip default

4. Configure Bro to send events to Kafka

In the following steps, if you want a new shell to your running bro container, do as necessary:

docker exec -ti bro bash

Make the sandbox hostname reachable

Kafka in the Logisland container broadcasts his hostname which we have set up being sandbox. For this hostname to
be reachable from the Bro container, we must declare the IP address of the Logisland container. In the Bro container,
edit the /etc/hosts file and add the following line at the end of the file, using the right IP address:

172.17.0.2 sandbox

Note: Be sure to use the IP address of your Logisland container.

Note: Any potential communication problem of the Bro-Kafka plugin will be displayed in the /usr/local/bro/
spool/bro/stderr.log log file. Also, you should not need this, but the advertised name used by Kafka is
declared in the /usr/local/kafka/config/server.properties file (in the Logisland container), in the
advertised.host.name property. Any modification to this property requires a Kafka server restart.

Edit the Bro config file

We will configure Bro so that it loads the Bro-Kafka plugin at startup. We will also point to Kafka of the Logisland
container and define the event types we want to push to Logisland.

Edit the config file of bro:

vi $BRO_HOME/share/bro/site/local.bro

At the beginning of the file, add the following section (take care to respect indentation):

40 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

@load Bro/Kafka/logs-to-kafka.bro
redef Kafka::kafka_conf = table(

["metadata.broker.list"] = "sandbox:9092",
["client.id"] = "bro"

);
redef Kafka::topic_name = "bro";
redef Kafka::logs_to_send = set(Conn::LOG, DNS::LOG, SSH::LOG, Notice::LOG);
redef Kafka::tag_json = T;

Let’s detail a bit what we did:

This line tells Bro to load the Bro-Kafka plugin at startup (the next lines are configuration for the Bro-Kafka plugin):

@load Bro/Kafka/logs-to-kafka.bro

These lines make the Bro-Kafka plugin point to the Kafka instance in the Logisland container (host, port, client id to
use). These are communication settings:

redef Kafka::kafka_conf = table(
["metadata.broker.list"] = "sandbox:9092",
["client.id"] = "bro"
);

This line tells the Kafka topic name to use. It is important that it is the same as the input topic of the ParseBroEvent
processor in Logisland:

redef Kafka::topic_name = "bro";

This line tells the Bro-Kafka plugin what type of events should be intercepted and sent to Kafka. For this tutorial we
send Connections, DNS and SSH events. We are also interested in any notice (alert) that Bro can generate. For a
complete list of possibilities, see the Bro documentation for events and notices:

redef Kafka::logs_to_send = set(Conn::LOG, DNS::LOG, SSH::LOG, Notice::LOG);

This line tells the Bro-Kafka plugin to add the event type in the Bro JSON document it sends. This is required and
expected by the Bro Processor as it uses this field to tag the record with his type. This also tells Logisland which
ElasticSearch index type to use for storing the event:

redef Kafka::tag_json = T;

Start Bro

To start bro, we use the broctl command that is already in the path of the container. It starts an interactive session
to control bro:

broctl

Then start the bro service: use the deploy command in broctl session:

Welcome to BroControl 1.5-9

Type "help" for help.

[BroControl] > deploy
checking configurations ...
installing ...

1.5. Tutorials 41

https://www.bro.org/sphinx/script-reference/log-files.html
https://www.bro.org/sphinx/bro-noticeindex.html

logisland Documentation, Release 0.10.0-rc1

removing old policies in /usr/local/bro/spool/installed-scripts-do-not-touch/site ...
removing old policies in /usr/local/bro/spool/installed-scripts-do-not-touch/auto ...
creating policy directories ...
installing site policies ...
generating standalone-layout.bro ...
generating local-networks.bro ...
generating broctl-config.bro ...
generating broctl-config.sh ...
stopping ...
bro not running
starting ...
starting bro ...

Note: The deploy command is a shortcut to the check, install and restart commands. Everytime you mod-
ify the $BRO_HOME/share/bro/site/local.bro configuration file, you must re-issue a deploy command
so that changes are taken into account.

5. Generate some Bro events and notices

Now that everything is in place you can generate some network activity in the Bro container to generate some events
and see them indexed in ElasticSearch.

Monitor Kafka topic

We will generate some events but first we want to see them in Kafka to be sure Bro has forwarded them to Kafka.
Connect to the Logisland container:

docker exec -ti logisland bash

Then use the kafkacat command to listen to messages incoming in the bro topic:

kafkacat -b localhost:9092 -t bro -o end

Let the command run. From now on, any incoming event from Bro and entering Kafka will be also displayed in this
shell.

Issue a DNS query

Open a shell to the Bro container:

docker exec -ti bro bash

Then use the ping command to trigger an underlying DNS query:

ping www.wikipedia.org

You should see in the listening kafkacat shell an incoming JSON Bro event of type dns.

Here is a pretty print version of this event. It should look like this one:

42 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

{
"dns": {
"AA": false,
"TTLs": [599],
"id.resp_p": 53,
"rejected": false,
"query": "www.wikipedia.org",
"answers": ["91.198.174.192"],
"trans_id": 56307,
"rcode": 0,
"id.orig_p": 60606,
"rcode_name": "NOERROR",
"TC": false,
"RA": true,
"uid": "CJkHd3UABb4W7mx8b",
"RD": false,
"id.orig_h": "172.17.0.2",
"proto": "udp",
"id.resp_h": "8.8.8.8",
"Z": 0,
"ts": 1487785523.12837

}
}

The Bro Processor should have processed this event which should have been handled next by the BulkAddElasticsearch
processor and finally the event should have been stored in ElasticSearch in the Logisland container.

To see this stored event, we will query ElasticSearch with the curl command. Let’s browse the dns type in any
index starting with bro:

curl http://sandbox:9200/bro*/dns/_search?pretty

Note: Do not forget to change sandbox with the IP address of the Logisland container if needed.

You should be able to localize in the response from ElasticSearch a DNS event which looks like:

{
"_index" : "bro.2017.02.23",
"_type" : "dns",
"_id" : "6aecfa3a-6a9e-4911-a869-b4e4599a69c1",
"_score" : 1.0,
"_source" : {
"@timestamp": "2017-02-23T17:45:36Z",
"AA": false,
"RA": true,
"RD": false,
"TC": false,
"TTLs": [599],
"Z": 0,
"answers": ["91.198.174.192"],
"id_orig_h": "172.17.0.2",
"id_orig_p": 60606,
"id_resp_h": "8.8.8.8",
"id_resp_p": 53,
"proto": "udp",
"query": "www.wikipedia.org",

1.5. Tutorials 43

logisland Documentation, Release 0.10.0-rc1

"rcode": 0,
"rcode_name": "NOERROR",
"record_id": "1947d1de-a65e-42aa-982f-33e9c66bfe26",
"record_time": 1487785536027,
"record_type": "dns",
"rejected": false,
"trans_id": 56307,
"ts": 1487785523.12837,
"uid": "CJkHd3UABb4W7mx8b"

}
}

You should see that this JSON document is stored in a indexed of the form /bro.XXXX.XX.XX/dns:

"_index" : "bro.2017.02.23",
"_type" : "dns",

Here, as the Bro event is of type dns, the event has been indexed using the dns ES type in the index. This allows to
easily search only among events of a particular type.

The ParseBroEvent processor has used the first level field dns of the incoming JSON event from Bro to add a
record_type field to the record he has created. This field has been used by the BulkAddElasticsearch proces-
sor to determine the index type to use for storing the record.

The @timestamp field is added by the BulkAddElasticsearch processor before pushing the record into ES. Its value
is derived from the record_time field which has been added with also the record_id field by Logisland when
the event entered Logisland. The ts field is the Bro timestamp which is the time when the event was generated in the
Bro system.

Other second level fields of the incoming JSON event from Bro have been set as first level fields in the record created
by the Bro Processor. Also any field that had a ”.” chacracter has been transformed to use a “_” character. For instance
the id.orig_h field has been renamed into id_orig_h.

That is basically all the job the Bro Processor does. It’s a small adaptation layer for Bro events. Now if you look in the
Bro documentation and know the Bro event format, you can be able to know the format of a matching record going
out of the ParseBroEvent processor. You should then be able to write some Logsisland processors to handle any record
going out of the Bro Processor.

Issue a Bro Notice

As a Bro notice is the result of analysis of many events, generating a real notice event with Bro is a bit more complicated
if you want to generate it with real traffic. Fortunately, Bro has the ability to generate events also from pcap files.
These are “packect capture” files. They hold the recording of a real network traffic. Bro analyzes the packets in those
files and generate events as if he was listening to real traffic.

In the Bro container, we have preloaded some pcap files in the $PCAP_HOME directory. Go into this directory:

cd $PCAP_HOME

The ssh.pcap file in this directory is a capture of a network traffic in which there is some SSH traffic with an attempt
to guess a user password. The analysis of such traffic generates a Bro SSH::Password_Guessing notice.

Let’s launch the following command to make Bro analyze the packets in the ssh.pcap file and generate this notice:

bro -r ssh.pcap local

44 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

In your previous kafkacat shell, you should see some ssh events that represent the SSH traffic. You should also
see a notice event like this one:

{
"notice": {
"ts":1320435875.879278,
"note":"SSH::Password_Guessing",
"msg":"172.16.238.1 appears to be guessing SSH passwords (seen in 30 connections).

→˓",
"sub":"Sampled servers: 172.16.238.136, 172.16.238.136, 172.16.238.136, 172.16.

→˓238.136, 172.16.238.136",
"src":"172.16.238.1",
"peer_descr":"bro",
"actions":["Notice::ACTION_LOG"],
"suppress_for":3600.0,
"dropped":false

}
}

Then, like for the DNS event, it should also have been indexed in the notice index type in ElastiSearch. Browse
documents in this type like this:

curl http://sandbox:9200/bro*/notice/_search?pretty

Note: Do not forget to change sandbox with the IP address of the Logisland container if needed.

In the response, you should see a notice event like this:

{
"_index" : "bro.2017.02.23",
"_type" : "notice",
"_id" : "76ab556b-167d-4594-8ee8-b05594cab8fc",
"_score" : 1.0,
"_source" : {

"@timestamp" : "2017-02-23T10:45:08Z",
"actions" : ["Notice::ACTION_LOG"],
"dropped" : false,
"msg" : "172.16.238.1 appears to be guessing SSH passwords (seen in 30

→˓connections).",
"note" : "SSH::Password_Guessing",
"peer_descr" : "bro",
"record_id" : "76ab556b-167d-4594-8ee8-b05594cab8fc",
"record_time" : 1487933108041,
"record_type" : "notice",
"src" : "172.16.238.1",
"sub" : "Sampled servers: 172.16.238.136, 172.16.238.136, 172.16.238.136, 172.

→˓16.238.136, 172.16.238.136",
"suppress_for" : 3600.0,
"ts" : 1.320435875879278E9

}
}

We are done with this first approach of Bro integration with LogIsland.

As we configured Bro to also send SSH and Connection events to Kafka, you can have a look at the matching generated
events in ES by browsing the ssh and conn index types:

1.5. Tutorials 45

logisland Documentation, Release 0.10.0-rc1

Browse SSH events
curl http://sandbox:9200/bro*/ssh/_search?pretty
Browse Connection events
curl http://sandbox:9200/bro*/conn/_search?pretty

If you wish, you can also add some additional event types to be sent to Kafka in the Bro config file and browse the
matching indexed events in ES using the same kind of curl commands just by changing the type in the query (do not
forget to re-deploy Bro after configuration file modifications).

Netflow/Logisland integration - Handling Netflow traffic

Netflow and Logisland

Netflow is a feature introduced on Cisco routers that provides the ability to collect IP network traffic. We can distin-
guish 2 components:

• Flow exporter: aggregates packets into flows and exports flow records (binary format) towards flow collectors

• Flow collector: responsible for reception, storage and pre-processing of flow data received from a flow exporter

The collected data are therefore available for analysis purpose (intrusion detection, traffic analysis...)

Network Flows: A network flow can be defined in many ways. Cisco standard NetFlow version 5 defines a flow as a
unidirectional sequence of packets that all share the following 7 values:

1. Ingress interface (SNMP ifIndex)

2. Source IP address

3. Destination IP address

4. IP protocol

5. Source port for UDP or TCP, 0 for other protocols

6. Destination port for UDP or TCP, type and code for ICMP, or 0 for other protocols

7. IP Type of Service

NetFlow Record

A NetFlow record can contain a wide variety of information about the traffic in a given flow. NetFlow version 5 (one
of the most commonly used versions, followed by version 9) contains the following:

• Input interface index used by SNMP (ifIndex in IF-MIB).

• Output interface index or zero if the packet is dropped.

• Timestamps for the flow start and finish time, in milliseconds since the last boot.

• Number of bytes and packets observed in the flow

• Layer 3 headers:

– Source & destination IP addresses

– ICMP Type and Code.

– IP protocol

– Type of Service (ToS) value

• Source and destination port numbers for TCP, UDP, SCTP

• For TCP flows, the union of all TCP flags observed over the life of the flow.

46 Chapter 1. Contents:

http://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/netflow/nfwhite.html

logisland Documentation, Release 0.10.0-rc1

• Layer 3 Routing information:

– IP address of the immediate next-hop (not the BGP nexthop) along the route to the destination

– Source & destination IP masks (prefix lengths in the CIDR notation)

Through its out-of-the-box Netflow processor, Logisland integrates with Netflow (V5) and is able to receive and handle
Netflow events coming from a netflow collector. By analyzing those events with Logisland, you may do some analysis
for example for intrusion detection or traffic analysis.

In this tutorial, we will show you how to generate some Netflow traffic in LogIsland and how to index them in
ElasticSearch and vizualize them in Kinbana. More complexe treatment could bv done by plugging any Logisland
processors after the Netflow processor.

Tutorial environment

This tutorial aims to show how to handle Netflow traffic within LogIsland.

For the purpose of this tutorial, we will generate Netflow traffic using nfgen. This tool will simulate a netflow traffic
and send binary netflow records on port 2055 of sandbox. A nifi instance running on sandbox will listen on that port
for incoming traffic and push the binary events to a kafka broker.

We will launch two streaming processes, one for generating the corresponding Netflow LogIsland records and the
second one to index them in ElasticSearch.

Note: It is important to understand that in real environment Netflow traffic will be triggered by network devices
(router, switches,...), so you will have to get the netflow traffic from the defined collectors, and send the corresponding
record (formatted in JSON format as described before) to the Logisland service (Kafka).

Note: You can download the latest release of Logisland and the YAML configuration file for this tutorial which can
also be found under $LOGISLAND_HOME/conf directory in the LogIsland container.

1. Start LogIsland as a Docker container

LogIsland is packaged as a Docker container that you can build yourself or pull from Docker Hub. The docker
container is built from a Centos 6.4 image with the following tools enabled (among others)

• Kafka

• Spark

• Elasticsearch

• Kibana

• LogIsland

Pull the image from Docker Repository (it may take some time)

docker pull hurence/logisland

You should be aware that this Docker container is quite eager in RAM and will need at least 8G of memory to run
smoothly. Now run the container

1.5. Tutorials 47

https://github.com/pazdera/NetFlow-Exporter-Simulator
https://github.com/Hurence/logisland/releases
https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-netflow-events.yml

logisland Documentation, Release 0.10.0-rc1

run container
docker run \

-it \
-p 80:80 \
-p 8080:8080 \
-p 2055:2055 \
-p 3000:3000 \
-p 9200-9300:9200-9300 \
-p 5601:5601 \
-p 2181:2181 \
-p 9092:9092 \
-p 9000:9000 \
-p 4050-4060:4050-4060 \
--name logisland \
-h sandbox \
hurence/logisland bash

get container ip
docker inspect logisland

or if your are on mac os
docker-machine ip default

you should add an entry for sandbox (with the container ip) in your /etc/hosts as it will be easier to access to all
web services in logisland running container.

Note: If you have your own Spark and Kafka cluster, you can download the latest release and unzip on an edge node.

2. Configuration steps

First we have to peform some configuration steps on sandbox (to configure and start elasticsearch and nifi). We will
create a dynamic template in ElasticSearch (to better handle the field mapping) using the following command:

docker exec -ti logisland bash

[root@sandbox /]# curl -XPUT localhost:9200/_template/netflow -d '{
"template" : "netflow.*",
"settings": {
"index.refresh_interval": "5s"

},
"mappings" : {
"netflowevent" : {

"numeric_detection": true,
"_all" : {"enabled" : false},
"properties" : {

"dOctets": {"index": "analyzed", "type": "long" },
"dPkts": { "index": "analyzed", "type": "long" },
"dst_as": { "index": "analyzed", "type": "long" },
"dst_mask": { "index": "analyzed", "type": "long" },
"dst_ip4": { "index": "analyzed", "type": "ip" },
"dst_port": { "index": "analyzed", "type": "long" },
"first":{"index": "analyzed", "type": "long" },
"input":{"index": "analyzed", "type": "long" },
"last":{"index": "analyzed", "type": "long" },
"nexthop":{"index": "analyzed", "type": "ip" },

48 Chapter 1. Contents:

https://github.com/Hurence/logisland/releases

logisland Documentation, Release 0.10.0-rc1

"output":{"index": "analyzed", "type": "long" },
"nprot":{"index": "analyzed", "type": "long" },
"record_time":{"index": "analyzed", "type": "date","format": "strict_date_

→˓optional_time||epoch_millis" },
"src_as":{"index": "analyzed", "type": "long" },
"src_mask":{"index": "analyzed", "type": "long" },
"src_ip4": { "index": "analyzed", "type": "ip" },
"src_port":{"index": "analyzed", "type": "long" },
"flags":{"index": "analyzed", "type": "long" },
"tos":{"index": "analyzed", "type": "long" },
"unix_nsecs":{"index": "analyzed", "type": "long" },
"unix_secs":{"index": "analyzed", "type": "date","format": "strict_date_

→˓optional_time||epoch_second" }
}

}
}

}'

In order to send netflow V5 event (binary format) to logisland_raw Kafka topic, we will use a nifi instance which
will simply listen for netflow traffic on a UDP port (we keep here the default netflow port 2055) and push these netflow
records to a kafka broker (sandbox:9092 with topic netflow).

1. Start nifi

docker exec -ti logisland bash
cd /usr/local/nifi-1.1.1
bin/nifi.sh start

browse http://sandbox:8080/nifi/

2. Import flow template

Download this nifi template and import it using “Upload Template” in “Operator” toolbox.

1.5. Tutorials 49

http://sandbox:8080/nifi/
https://github.com/Hurence/logisland/tree/master/logisland-documentation/_static/nifi_netflow.xml

logisland Documentation, Release 0.10.0-rc1

3. Use this template to create the nifi flow

Drag the nifi toolbar template icon in the nifi work area and choose “nifi_netflow” template, the press “ADD”
button

50 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

You finally have the following nifi flow

4. start nifi processors

Select listenUDP processor of nifi flow, right click on it and press “Start”. Do the same for putKafka
processor.

Note: the PutFile processor is only for debugging purpose. It dumps netflow records to /tmp/netflow
directory (that should be previously created). So you normally don’t have to start it for that demo.

3. Parse Netflow records

For this tutorial we will handle netflow binary events, generate corresponding logisland records and store them to
Elastiscearch

Connect a shell to your logisland container to launch the following streaming jobs.

docker exec -ti logisland bash
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-netflow-events.yml

Setup Spark/Kafka streaming engine

An Engine is needed to handle the stream processing. This conf/index-netflow-events.yml configuration
file defines a stream processing job setup. The first section configures the Spark engine (we will use a KafkaStream-
ProcessingEngine) as well as an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

1.5. Tutorials 51

logisland Documentation, Release 0.10.0-rc1

engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Index Netflow events with LogIsland
configuration:
spark.app.name: IndexNetFlowEventsDemo
spark.master: local[4]
spark.driver.memory: 1G
spark.driver.cores: 1
spark.executor.memory: 2G
spark.executor.instances: 4
spark.executor.cores: 2
spark.yarn.queue: default
spark.yarn.maxAppAttempts: 4
spark.yarn.am.attemptFailuresValidityInterval: 1h
spark.yarn.max.executor.failures: 20
spark.yarn.executor.failuresValidityInterval: 1h
spark.task.maxFailures: 8
spark.serializer: org.apache.spark.serializer.KryoSerializer
spark.streaming.batchDuration: 4000
spark.streaming.backpressure.enabled: false
spark.streaming.unpersist: false
spark.streaming.blockInterval: 500
spark.streaming.kafka.maxRatePerPartition: 3000
spark.streaming.timeout: -1
spark.streaming.unpersist: false
spark.streaming.kafka.maxRetries: 3
spark.streaming.ui.retainedBatches: 200
spark.streaming.receiver.writeAheadLog.enable: false
spark.ui.port: 4050

controllerServiceConfigurations:

- controllerService: elasticsearch_service
component: com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_

→˓ClientService
type: service
documentation: elasticsearch 2.4.0 service implementation
configuration:

hosts: sandbox:9300
cluster.name: elasticsearch
batch.size: 20000

streamConfigurations:

Stream 1 : parse incoming Netflow (Binary format) lines

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper
hosts. Here the stream will read all the logs sent in logisland_raw topic and push the processing output into
logisland_events topic.

We can define some serializers to marshall all records from and to a topic.

Parsing
- stream: parsing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing

52 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

type: stream
documentation: A processor chain that transforms Netflow events into Logisland

→˓records
configuration:
kafka.input.topics: netflow
kafka.output.topics: logisland_events
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: none
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 2

processorConfigurations:

Within this stream there is a single processor in the processor chain: the Netflow processor. It takes an incoming
Netflow event/notice binary record, parses it and computes a Logisland Record as a sequence of fields that were
contained in the binary record.

Transform Netflow events into Logisland records
- processor: Netflow adaptor

component: com.hurence.logisland.processor.netflow.ParseNetflowEvent
type: parser
documentation: A processor that transforms Netflow events into LogIsland events
configuration:
debug: false
enrich.record: false

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will
be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

Stream 2: Index the processed records into Elasticsearch

The second Kafka stream will handle Records pushed into the logisland_events topic to index them into
ElasticSearch. So there is no need to define an output topic:

Indexing
- stream: indexing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: processor
documentation: A processor chain that pushes netflow events to ES
configuration:
kafka.input.topics: logisland_events
kafka.output.topics: none
kafka.error.topics: logisland_errors
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: none
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:

1.5. Tutorials 53

logisland Documentation, Release 0.10.0-rc1

The only processor in the processor chain of this stream is the BulkAddElasticsearch processor.

Bulk add into ElasticSearch
- processor: ES Publisher

component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
type: processor
documentation: A processor that pushes Netflow events into ES
configuration:
elasticsearch.client.service: elasticsearch_service
default.index: netflow
default.type: events
timebased.index: today
es.index.field: search_index
es.type.field: record_type

The default.index: netflow configuration parameter tells the processor to index events into an index start-
ing with the netflow string. The timebased.index: today configuration parameter tells the processor to
use the current date after the index prefix. Thus the index name is of the form /netflow.2017.03.30.

Finally, the es.type.field: record_type configuration parameter tells the processor to use the record field
record_type of the incoming record to determine the ElasticSearch type to use within the index.

4. Inject Netflow events into the system

Generate Netflow events to port 2055 of localhost

Now that we have our nifi flow listening on port 2055 from Netflow (V5) traffic and push them to kafka, we have to
generate netflow traffic. For the purpose of this tutorial, as already mentioned, we will install and use a netflow traffic
generator (but you can use whatever other way to generate Netflow V5 traffic to port 2055)

docker exec -ti logisland bash
cd /tmp
wget https://github.com/pazdera/NetFlow-Exporter-Simulator/archive/master.zip
unzip master.zip
cd NetFlow-Exporter-Simulator-master/
make
./nfgen #this command will generate netflow V5 traffic and send it to local port
→˓2055.

5. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process your data

54 Chapter 1. Contents:

http://sandbox:4050/streaming/

logisland Documentation, Release 0.10.0-rc1

6. Use Kibana to inspect events

Inspect Netflow events under Discover tab

Open your browser and go to http://sandbox:5601/

Configure a new index pattern with netflow.* as the pattern name and @timestamp as the time value field.

1.5. Tutorials 55

http://sandbox:5601/app/kibana#/settings/indices/?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:now-15m,mode:quick,to:now))

logisland Documentation, Release 0.10.0-rc1

Then browse “Discover” tab, you should be able to explore your Netflow events.

56 Chapter 1. Contents:

http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:'5%20seconds',pause:!f,section:1,value:5000),time:(from:now-1h,mode:relative,to:now))

logisland Documentation, Release 0.10.0-rc1

You have now to save your search by clicking the save icon. Save this search as “netflowsearch”

1.5. Tutorials 57

logisland Documentation, Release 0.10.0-rc1

Display network information in kibana dashboard

First, you need to import the predefined Kibana dashboard (download this file first) under Settings tab, Objetcs
subtab.

Select Import and load previously saved netflow_dashboard.json dashboard (it also contains required Kibana visu-
alizations)

Then visit Dashboard tab, and open dashboard_netflow dashboard by clicking on Load Saved
Dashboard. You should be able to visualize information about the generated traffic (choose the right time win-
dow, corresponding to the time of your traffic, in the right upper corner of kibana page)

58 Chapter 1. Contents:

https://github.com/Hurence/logisland/tree/master/logisland-documentation/_static/netflow_dashboard.json

logisland Documentation, Release 0.10.0-rc1

Capturing Network packets in Logisland

1. Network Packets

A network packet is a formatted unit of data carried by a network from one computer (or device) to another. For
example, a web page or an email are carried as a series of packets of a certain size in bytes. Each packet carries
the information that will help it get to its destination : the sender’s IP address, the intended receiver’s IP address,
something that tells the network how many packets the message has been broken into, ...

Packet Headers

1. Protocol headers (IP, TCP, . . .)

This information is stored in different layers called “headers”, encapsulating the packet payload. For example, a
TCP/IP packet is wrapped in a TCP header, which is in turn encapsulated in an IP header.

The individual packets for a given file or message may travel different routes through the Internet. When they have all
arrived, they are reassembled by the TCP layer at the receiving end.

2. PCAP format specific headers

Packets can be either analysed in real-time (stream mode) or stored in files for upcoming analysis (batch mode). In the
latter case, the packets are stored in the pcap format, adding some specific headers :

• a global header is added in the beginning of the pcap file

• a packet header is added in front of each packet

In this tutorial we are going to capture packets in live stream mode

1.5. Tutorials 59

https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure
https://en.wikipedia.org/wiki/IPv4#Header
https://wiki.wireshark.org/Development/LibpcapFileFormat#Global_Header
https://wiki.wireshark.org/Development/LibpcapFileFormat#Record_.28Packet.29_Header

logisland Documentation, Release 0.10.0-rc1

Why capturing network packets ?

Packet sniffing, or packet analysis, is the process of capturing any data transmitted over the local network and searching
for any information that may be useful for :

• Troubleshooting network problems

• Detecting network intrusion attempts

• Detecting network misuse by internal and external users

• Monitoring network bandwidth utilization

• Monitoring network and endpoint security status

• Gathering and report network statistics

Packets information collected by Logisland

LogIsland parses all the fields of IP protocol headers, namely :

1. IP Header fields

• IP version : ip_version

• Internet Header Length : ip_internet_header_length

• Type of Service : ip_type_of_service

• Datagram Total Length : ip_datagram_total_length

• Identification : ip_identification

• Flags : ip_flags

• Fragment offset : ip_fragment_offset

• Time To Live : ip_time_to_live

• Protocol : protocol

• Header Checksum : ip_checksum

• Source IP address : src_ip

• Destination IP address : dst_ip

• Options : ip_options (variable size)

• Padding : ip_padding (variable size)

2. TCP Header fields

• Source port number : src_port

• Destination port number : dest_port

• Sequence Number : tcp_sequence_number

• Acknowledgment Number : tcp_acknowledgment_number

• Data offset : tcp_data_offset

• Flags : tcp_flags

• Window size : tcp_window_size

• Checksum : tcp_checksum

60 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

• Urgent Pointer : tcp_urgent_pointer

• Options : tcp_options (variable size)

• Padding : tcp_padding (variable size)

3. UDP Header fields

• Source port number : src_port

• Destination port number : dest_port

• Segment total length : udp_segment_total_length

• Checksum : udp_checksum

2. Tutorial environment

This tutorial aims to show how to capture live Network Packets and process then in LogIsland. Through its out-
of-the-box ParseNetworkPacket processor, LogIsland is able to receive and handle network packets captured by a
packet sniffer tool. Using LogIsland, you will be able to inspect those packets for network security, optimization or
monitoring reasons.

In this tutorial, we will show you how to capture network packets, process those packets in LogIsland, index them in
ElasticSearch and then display them in Kibana.

We will launch two streaming processors, one for parsing Network Packets into LogIsland packet records, and one to
index those packet records in ElasticSearch.

Packet Capture Tool

For the purpose of this tutorial, we are going to capture network packets (off-the-wire) into a kafka topic using pycapa
Apache probe, a tool based on Pcapy, a Python extension module that interfaces with the libpcap packet capture library.

For information, it is also possible to use the fastcapa Apache probe, based on DPDK, intended for high-volume packet
capture.

Note: You can download the latest release of LogIsland and the YAML configuration file for this tutorial which can
be also found under $LOGISLAND_HOME/conf directory in the LogIsland container.

3. Start LogIsland as a Docker container

LogIsland is packaged as a Docker container that you can build yourself or pull from Docker Hub. The docker
container is built from a Centos 6.4 image with the following tools enabled (among others)

• Kafka

• Spark

• Elasticsearch

• Kibana

• LogIsland

Pull the image from Docker Repository (it may take some time)

1.5. Tutorials 61

https://github.com/apache/incubator-metron/tree/master/metron-sensors/pycapa
https://github.com/CoreSecurity/pcapy
http://www.tcpdump.org
https://github.com/apache/incubator-metron/tree/master/metron-sensors/fastcapa
http://dpdk.org/
https://github.com/Hurence/logisland/releases
https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-network-packets.yml

logisland Documentation, Release 0.10.0-rc1

docker pull hurence/logisland

You should be aware that this Docker container is quite eager in RAM and will need at least 8G of memory to run
smoothly. Now run the container

run container
docker run \

-it \
-p 80:80 \
-p 8080:8080 \
-p 3000:3000 \
-p 9200-9300:9200-9300 \
-p 5601:5601 \
-p 2181:2181 \
-p 9092:9092 \
-p 9000:9000 \
-p 4050-4060:4050-4060 \
--name logisland \
-h sandbox \
hurence/logisland bash

get container ip
docker inspect logisland

or if your are on mac os
docker-machine ip default

you should add an entry for sandbox (with the container ip) in your /etc/hosts as it will be easier to access to all
web services in logisland running container.

Note: If you have your own Spark and Kafka cluster, you can download the latest release and unzip on an edge node.

4. Parse Network Packets

In this tutorial we will capture network packets, process those packets in LogIsland and index them in ElasticSearch.

Connect a shell to your logisland container to launch LogIsland streaming jobs :

docker exec -ti logisland bash
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-network-packets.yml

Setup Spark/Kafka streaming engine

An Engine is needed to handle the stream processing. This conf/index-network-packets.yml configuration
file defines a stream processing job setup. The first section configures the Spark engine, we will use a KafkaStream-
ProcessingEngine :

engine:
component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
type: engine
documentation: Parse network packets with LogIsland
configuration:

62 Chapter 1. Contents:

https://github.com/Hurence/logisland/releases

logisland Documentation, Release 0.10.0-rc1

spark.app.name: ParseNetworkPacketDemo
spark.master: local[4]
spark.driver.memory: 1G
spark.driver.cores: 1
spark.executor.memory: 2G
spark.executor.instances: 4
spark.executor.cores: 2
spark.yarn.queue: default
spark.yarn.maxAppAttempts: 4
spark.yarn.am.attemptFailuresValidityInterval: 1h
spark.yarn.max.executor.failures: 20
spark.yarn.executor.failuresValidityInterval: 1h
spark.task.maxFailures: 8
spark.serializer: org.apache.spark.serializer.KryoSerializer
spark.streaming.batchDuration: 4000
spark.streaming.backpressure.enabled: false
spark.streaming.unpersist: false
spark.streaming.blockInterval: 500
spark.streaming.kafka.maxRatePerPartition: 3000
spark.streaming.timeout: -1
spark.streaming.unpersist: false
spark.streaming.kafka.maxRetries: 3
spark.streaming.ui.retainedBatches: 200
spark.streaming.receiver.writeAheadLog.enable: false
spark.ui.port: 4050

controllerServiceConfigurations:

- controllerService: elasticsearch_service
component: com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_

→˓ClientService
type: service
documentation: elasticsearch 2.4.0 service implementation
configuration:

hosts: sandbox:9300
cluster.name: elasticsearch
batch.size: 4000

streamConfigurations:

Stream 1 : parse incoming Network Packets

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper
hosts. Here the stream will read all the logs sent in logisland_input_packets_topic topic and push the
processed packet records into logisland_parsed_packets_topic topic.

We can define some serializers to marshall all records from and to a topic.

Parsing
- stream: parsing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: stream
documentation: A processor chain that parses network packets into Logisland records
configuration:
kafka.input.topics: logisland_input_packets_topic
kafka.output.topics: logisland_parsed_packets_topic

1.5. Tutorials 63

logisland Documentation, Release 0.10.0-rc1

kafka.error.topics: logisland_error_packets_topic
kafka.input.topics.serializer: com.hurence.logisland.serializer.

→˓BytesArraySerializer
kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:

Within this stream there is a single processor in the processor chain: the ParseNetworkPacket processor. It takes an
incoming network packet, parses it and computes a LogIsland record as a sequence of fields corresponding to packet
headers fields.

Transform network packets into LogIsland packet records
- processor: ParseNetworkPacket processor

component: com.hurence.logisland.processor.networkpacket.ParseNetworkPacket
type: parser
documentation: A processor that parses network packets into LogIsland records
configuration:
debug: true
flow.mode: stream

This stream will process network packets as soon as they will be queued into
logisland_input_packets_topic Kafka topic, each packet will be parsed as a record which will be
pushed back to Kafka in the logisland_parsed_packets_topic topic.

Stream 2: Index the processed records into Elasticsearch

The second Kafka stream will handle Records pushed into the logisland_parsed_packets_topic topic to
index them into ElasticSearch. So there is no need to define an output topic:

Indexing
- stream: indexing_stream

component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
type: processor
documentation: a processor that pushes events to ES
configuration:
kafka.input.topics: logisland_parsed_packets_topic
kafka.output.topics: none
kafka.error.topics: logisland_error_packets_topic
kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
kafka.output.topics.serializer: none
kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
kafka.metadata.broker.list: sandbox:9092
kafka.zookeeper.quorum: sandbox:2181
kafka.topic.autoCreate: true
kafka.topic.default.partitions: 2
kafka.topic.default.replicationFactor: 1

processorConfigurations:

The only processor in the processor chain of this stream is the BulkAddElasticsearch processor.

64 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

Bulk add into ElasticSearch
- processor: ES Publisher

component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
type: processor
documentation: A processor that pushes network packet records into ES
configuration:
elasticsearch.client.service: elasticsearch_service
default.index: packets_index
default.type: events
timebased.index: today
es.index.field: search_index
es.type.field: record_type

The default.index: packets_index configuration parameter tells the elasticsearch processor to index
records into an index starting with the packets_index string. The timebased.index: today configu-
ration parameter tells the processor to use the current date after the index prefix. Thus the index name is of the form
/packets_index.2017.03.30.

Finally, the es.type.field: record_type configuration parameter tells the processor to use the record field
record_type of the incoming record to determine the ElasticSearch type to use within the index.

5. Stream network packets into the system

Let’s install and use the Apache pycapa probe to capture and send packets to kafka topics in real time.

Install pycapa probe

All required steps to install pycapa probe are explained in this site, but here are the main installation steps :

1. Install libpcap, pip (python-pip) and python-devel :

yum install libpcap
yum install python-pip
yum install python-devel

2. Build pycapa probe from Metron repo

cd /tmp
git clone https://github.com/apache/incubator-metron.git
cd incubator-metron/metron-sensors/pycapa
pip install -r requirements.txt
python setup.py install

Capture network packets

To start capturing network packets into the topic logisland_input_packets_topic using pycapa probe, use
the following command :

pycapa --producer --kafka sandbox:9092 --topic logisland_input_packets_topic -i eth0

6. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process your data

1.5. Tutorials 65

https://github.com/apache/incubator-metron/tree/master/metron-sensors/pycapa
http://sandbox:4050/streaming/

logisland Documentation, Release 0.10.0-rc1

7. Use Kibana to inspect records

Inspect Network Packets under Discover tab

Open your browser and go to http://sandbox:5601/

Configure a new index pattern with packets.* as the pattern name and @timestamp as the time value field.

66 Chapter 1. Contents:

http://sandbox:5601/app/kibana#/settings/indices/?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:now-15m,mode:quick,to:now))

logisland Documentation, Release 0.10.0-rc1

Then browse “Discover” tab, you should be able to explore your network packet records :

API design

logisland is a framework that you can extend through its API, you can use it to build your own Processors or to
build data processing apps over it.

Java API

You can extend logisland with the Java low-level API as described below.

The primary material : Records

The basic unit of processing is the Record. A Record is a collection of Field, while a Field has a name, a type
and a value.

1.6. API design 67

http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:'5%20seconds',pause:!f,section:1,value:5000),time:(from:now-1h,mode:relative,to:now))

logisland Documentation, Release 0.10.0-rc1

You can instanciate a Record like in the following code snipet:

String id = "firewall_record1";
String type = "cisco";
Record record = new Record(type).setId(id);

assertTrue(record.isEmpty());
assertEquals(record.size(), 0);

A record is defined by its type and a collection of fields. there are three special fields:

// shortcut for id
assertEquals(record.getId(), id);
assertEquals(record.getField(FieldDictionary.RECORD_ID).asString(), id);

// shortcut for time
assertEquals(record.getTime().getTime(), record.getField(FieldDictionary.RECORD_TIME).
→˓asLong().longValue());

// shortcut for type
assertEquals(record.getType(), type);
assertEquals(record.getType(), record.getField(FieldDictionary.RECORD_TYPE).
→˓asString());
assertEquals(record.getType(), record.getField(FieldDictionary.RECORD_TYPE).
→˓getRawValue());

And the other fields have generic setters, getters and removers

record.setStringField("url_host", "origin-www.20minutes.fr")
.setField("method", FieldType.STRING, "GET")
.setField("response_size", FieldType.INT, 452)
.setField("is_outside_office_hours", FieldType.BOOLEAN, false)
.setField("tags", FieldType.ARRAY, Arrays.asList("spam", "filter", "mail"));

assertFalse(record.hasField("unkown_field"));
assertTrue(record.hasField("method"));
assertEquals(record.getField("method").asString(), "GET");
assertTrue(record.getField("response_size").asInteger() - 452 == 0);
assertTrue(record.getField("is_outside_office_hours").asBoolean());
record.removeField("is_outside_office_hours");
assertFalse(record.hasField("is_outside_office_hours"));

Fields are strongly typed, you can validate them

Record record = new StandardRecord();
record.setField("request_size", FieldType.INT, 1399);
assertTrue(record.isValid());
record.setField("request_size", FieldType.INT, "zer");
assertFalse(record.isValid());
record.setField("request_size", FieldType.INT, 45L);
assertFalse(record.isValid());
record.setField("request_size", FieldType.LONG, 45L);
assertTrue(record.isValid());
record.setField("request_size", FieldType.DOUBLE, 45.5d);
assertTrue(record.isValid());
record.setField("request_size", FieldType.DOUBLE, 45.5);
assertTrue(record.isValid());
record.setField("request_size", FieldType.DOUBLE, 45L);
assertFalse(record.isValid());

68 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

record.setField("request_size", FieldType.FLOAT, 45.5f);
assertTrue(record.isValid());
record.setField("request_size", FieldType.STRING, 45L);
assertFalse(record.isValid());
record.setField("request_size", FieldType.FLOAT, 45.5d);
assertFalse(record.isValid());

The tools to handle processing : Processor

logisland is designed as a component centric framework, so there’s a layer of abstraction to build configurable compo-
nents. Basically a component can be Configurable and Configured.

The most common component you’ll use is the Processor

Let’s explain the code of a basic MockProcessor, that doesn’t acheive a really useful work but which is really
self-explanatory we first need to extend AbstractProcessor class (or to implement Processor interface).

public class MockProcessor extends AbstractProcessor {

private static Logger logger = LoggerFactory.getLogger(MockProcessor.class);
private static String EVENT_TYPE_NAME = "mock";

Then we have to define a list of supported PropertyDescriptor. All theses properties and validation stuff are
handled by Configurable interface.

public static final PropertyDescriptor FAKE_MESSAGE
= new PropertyDescriptor.Builder()

.name("fake.message")

.description("a fake message")

.required(true)

.addValidator(StandardPropertyValidators.NON_EMPTY_VALIDATOR)

.defaultValue("yoyo")

.build();

@Override
public final List<PropertyDescriptor> getSupportedPropertyDescriptors() {

final List<PropertyDescriptor> descriptors = new ArrayList<>();
descriptors.add(FAKE_MESSAGE);

return Collections.unmodifiableList(descriptors);
}

then comes the initialization bloc of the component given a ComponentContext (more on this later)

@Override
public void init(final ComponentContext context) {

logger.info("init MockProcessor");
}

And now the real business part with the process method which handles all the work on the record’s collection.

@Override
public Collection<Record> process(final ComponentContext context,

final Collection<Record> collection) {
// log inputs
collection.stream().forEach(record -> {

logger.info("mock processing record : {}", record)

1.6. API design 69

logisland Documentation, Release 0.10.0-rc1

});

// output a useless record
Record mockRecord = new Record("mock_record");
mockRecord.setField("incomingEventsCount", FieldType.INT, collection.size());
mockRecord.setStringField("message",

context.getProperty(FAKE_MESSAGE).asString());

return Collections.singleton(mockRecord);
}

}

The runtime context : Instance

you can use your wonderful processor by setting its configuration and asking the ComponentFactory to give you
one ProcessorInstance which is a ConfiguredComponent.

String message = "logisland rocks !";
Map<String, String> conf = new HashMap<>();
conf.put(MockProcessor.FAKE_MESSAGE.getName(), message);

ProcessorConfiguration componentConfiguration = new ProcessorConfiguration();
componentConfiguration.setComponent(MockProcessor.class.getName());
componentConfiguration.setType(ComponentType.PROCESSOR.toString());
componentConfiguration.setConfiguration(conf);

Optional<StandardProcessorInstance> instance =
ComponentFactory.getProcessorInstance(componentConfiguration);

assertTrue(instance.isPresent());

Then you need a ComponentContext to run your processor.

ComponentContext context = new StandardComponentContext(instance.get());
Processor processor = instance.get().getProcessor();

And finally you can use it to process records

Record record = new Record("mock_record");
record.setId("record1");
record.setStringField("name", "tom");
List<Record> records =

new ArrayList<>(processor.process(context, Collections.singleton(record)));

assertEquals(1, records.size());
assertTrue(records.get(0).hasField("message"));
assertEquals(message, records.get(0).getField("message").asString());

Chaining processors in a stream : RecordStream

Warning: @todo

70 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

Running the processor’s flow : Engine

Warning: @todo

Packaging and conf

The end user of logisland is not the developer, but the business analyst which does understand any line of code. That’s
why we can deploy all our components through yaml config files

- processor: mock_processor
component: com.hurence.logisland.util.runner.MockProcessor
type: parser
documentation: a parser that produce events for nothing
configuration:

fake.message: the super message

Testing your processors : TestRunner

When you have coded your processor, pretty sure you want to test it with unit test. The framework provides you with
the TestRunner tool for that. All you need is to instantiate a Testrunner with your Processor and its properties.

final String APACHE_LOG_SCHEMA = "/schemas/apache_log.avsc";
final String APACHE_LOG = "/data/localhost_access.log";
final String APACHE_LOG_FIELDS =

"src_ip,identd,user,record_time,http_method,http_query,http_version,http_status,
→˓bytes_out";
final String APACHE_LOG_REGEX =

"(\\S+)\\s+(\\S+)\\s+(\\S+)\\s+\\[([\\w:/]+\\s[+\\-]\\d{4})\\]\\s+\
→˓"(\\S+)\\s+(\\S+)\\s+(\\S+)\"\\s+(\\S+)\\s+(\\S+)";

final TestRunner testRunner = TestRunners.newTestRunner(new SplitText());
testRunner.setProperty(SplitText.VALUE_REGEX, APACHE_LOG_REGEX);
testRunner.setProperty(SplitText.VALUE_FIELDS, APACHE_LOG_FIELDS);
// check if config is valid
testRunner.assertValid();

Now enqueue some messages as if they were sent to input Kafka topics

testRunner.clearQueues();
testRunner.enqueue(SplitTextTest.class.getResourceAsStream(APACHE_LOG));

Now run the process method and check that every Record has been correctly processed.

testRunner.run();
testRunner.assertAllInputRecordsProcessed();
testRunner.assertOutputRecordsCount(200);
testRunner.assertOutputErrorCount(0);

You can validate that all output records are validated against an avro schema

final RecordValidator avroValidator = new AvroRecordValidator(SplitTextTest.class.
→˓getResourceAsStream
testRunner.assertAllRecords(avroValidator);

1.6. API design 71

logisland Documentation, Release 0.10.0-rc1

And check if your output records behave as expected.

MockRecord out = testRunner.getOutputRecords().get(0);
out.assertFieldExists("src_ip");
out.assertFieldNotExists("src_ip2");
out.assertFieldEquals("src_ip", "10.3.10.134");
out.assertRecordSizeEquals(9);
out.assertFieldEquals(FieldDictionary.RECORD_TYPE, "apache_log");
out.assertFieldEquals(FieldDictionary.RECORD_TIME, 1469342728000L);

REST API

You can extend logisland with the Java high-level REST API as described below.

Design Tools

The REST API is designed with Swagger

You can use the docker image for the swagger-editor to edit the swagger yaml file and generate source code.

docker pull swaggerapi/swagger-editor
docker run -d -p 80:8080 swaggerapi/swagger-editor

If you’re under mac you can setup swagger-codegen

brew install swagger-codegen

or
wget https://oss.sonatype.org/content/repositories/releases/io/swagger/swagger-
→˓codegen-cli/2.2.1/swagger-codegen-cli-2.2.1.jar

You can then start to generate the source code from the swgger yaml file

swagger-codegen generate \
--group-id com.hurence.logisland \
--artifact-id logisland-agent \
--artifact-version 0.10.0-rc1 \
--api-package com.hurence.logisland.agent.rest.api \
--model-package com.hurence.logisland.agent.rest.model \
-o logisland-framework/logisland-agent \
-l jaxrs \
--template-dir logisland-framework/logisland-agent/src/main/swagger/templates \
-i logisland-framework/logisland-agent/src/main/swagger/api-swagger.yaml

Swagger Jetty server

This server was generated by the swagger-codegen project. By using the OpenAPI-Spec from a remote server, you
can easily generate a server stub. This is an example of building a swagger-enabled JAX-RS server.

This example uses the JAX-RS framework.

To run the server, please execute the following:

cd logisland-framework/logisland-agent
mvn clean package jetty:run

72 Chapter 1. Contents:

http://swagger.io
https://github.com/swagger-api/swagger-codegen
https://github.com/swagger-api/swagger-core/wiki
http://https://jax-rs-spec.java.net

logisland Documentation, Release 0.10.0-rc1

You can then view the swagger.json .

> Note that if you have configured the host to be something other than localhost, the calls through swagger-ui will be
directed to that host and not localhost!

Components

You’ll find here the list of all usable Processors, Engines, Services and other components that can be usable out of the
box in your analytics streams

BulkAddElasticsearch

Indexes the content of a Record in Elasticsearch using elasticsearch’s bulk processor

Class

com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch

Tags

elasticsearch

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values , and whether a property supports the Expression Language .

1.7. Components 73

http://localhost:8080/agent/api/v0.10.0/swagger.json

logisland Documentation, Release 0.10.0-rc1

Table 1.1: allowable-values

Name Description Allowable Values De-
fault
Value

Sen-
si-
tive

EL

elastic-
search.client.service

The instance of the
Controller Service to use for
accessing Elasticsearch.

null

de-
fault.index

The name of the index to
insert into

null true

de-
fault.type

The type of this document
(used by Elasticsearch for
indexing and searching)

null true

time-
based.index

do we add a date suffix No date (no date added to default index), Today’s
date (today’s date added to default index),
yesterday’s date (yesterday’s date added to
default index)

no

es.index.fieldthe name of the event field
containing es index name =>
will override index value if
set

null

es.type.field the name of the event field
containing es doc type =>
will override type value if
set

null

ConsolidateSession

The ConsolidateSession processor is the Logisland entry point to get and process events from the Web Analytics.As
an example here is an incoming event from the Web Analytics:

“fields”: [{ “name”: “timestamp”, “type”: “long” },{ “name”: “remoteHost”, “type”: “string”},{ “name”:
“record_type”, “type”: [”null”, “string”], “default”: null },{ “name”: “record_id”, “type”: [”null”, “string”], “de-
fault”: null },{ “name”: “location”, “type”: [”null”, “string”], “default”: null },{ “name”: “hitType”, “type”: [”null”,
“string”], “default”: null },{ “name”: “eventCategory”, “type”: [”null”, “string”], “default”: null },{ “name”: “even-
tAction”, “type”: [”null”, “string”], “default”: null },{ “name”: “eventLabel”, “type”: [”null”, “string”], “default”:
null },{ “name”: “localPath”, “type”: [”null”, “string”], “default”: null },{ “name”: “q”, “type”: [”null”, “string”],
“default”: null },{ “name”: “n”, “type”: [”null”, “int”], “default”: null },{ “name”: “referer”, “type”: [”null”,
“string”], “default”: null },{ “name”: “viewportPixelWidth”, “type”: [”null”, “int”], “default”: null },{ “name”:
“viewportPixelHeight”, “type”: [”null”, “int”], “default”: null },{ “name”: “screenPixelWidth”, “type”: [”null”,
“int”], “default”: null },{ “name”: “screenPixelHeight”, “type”: [”null”, “int”], “default”: null },{ “name”: “par-
tyId”, “type”: [”null”, “string”], “default”: null },{ “name”: “sessionId”, “type”: [”null”, “string”], “default”: null
},{ “name”: “pageViewId”, “type”: [”null”, “string”], “default”: null },{ “name”: “is_newSession”, “type”: [”null”,
“boolean”],”default”: null },{ “name”: “userAgentString”, “type”: [”null”, “string”], “default”: null },{ “name”:
“pageType”, “type”: [”null”, “string”], “default”: null },{ “name”: “UserId”, “type”: [”null”, “string”], “default”:
null },{ “name”: “B2Bunit”, “type”: [”null”, “string”], “default”: null },{ “name”: “pointOfService”, “type”: [”null”,
“string”], “default”: null },{ “name”: “companyID”, “type”: [”null”, “string”], “default”: null },{ “name”: “Group-
Code”, “type”: [”null”, “string”], “default”: null },{ “name”: “userRoles”, “type”: [”null”, “string”], “default”: null
},{ “name”: “is_PunchOut”, “type”: [”null”, “string”], “default”: null }]The ConsolidateSession processor groups
the records by sessions and compute the duration between now and the last received event. If the distance from the

74 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

last event is beyond a given threshold (by default 30mn), then the session is considered closed.The ConsolidateSes-
sion is building an aggregated session object for each active session.This aggregated object includes: - The actual
session duration. - A boolean representing wether the session is considered active or closed. Note: it is possible to
ressurect a session if for instance an event arrives after a session has been marked closed. - User related infos: userId,
B2Bunit code, groupCode, userRoles, companyId - First visited page: URL - Last visited page: URL The properties
to configure the processor are: - sessionid.field: Property name containing the session identifier (default: sessionId).
- timestamp.field: Property name containing the timestamp of the event (default: timestamp). - session.timeout:
Timeframe of inactivity (in seconds) after which a session is considered closed (default: 30mn). - visitedpage.field:
Property name containing the page visited by the customer (default: location). - fields.to.return: List of fields to return
in the aggregated object. (default: N/A)

Class

com.hurence.logisland.processor.consolidateSession.ConsolidateSession

Tags

analytics, web, session

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

1.7. Components 75

logisland Documentation, Release 0.10.0-rc1

Table 1.2: allowable-values

Name Description Allow-
able
Values

Default
Value

Sen-
si-
tive

EL

debug Enable debug. If enabled, the original JSON string
is embedded in the record_value field of the record.

null

session.timeout session timeout in sec 1800
sessionid.field the name of the field containing the session id =>

will override default value if set
sessionId

timestamp.field the name of the field containing the timestamp =>
will override default value if set

h2kTimestamp

visitedpage.field the name of the field containing the visited page =>
will override default value if set

location

userid.field the name of the field containing the userId => will
override default value if set

userId

fields.to.return the list of fields to return null
firstVisited-
Page.out.field

the name of the field containing the first visited
page => will override default value if set

firstVisited-
Page

lastVisited-
Page.out.field

the name of the field containing the last visited
page => will override default value if set

lastVisited-
Page

isSessionAc-
tive.out.field

the name of the field stating whether the session is
active or not => will override default value if set

is_sessionActive

sessionDura-
tion.out.field

the name of the field containing the session
duration => will override default value if set

session-
Duration

eventsCounter.out.fieldthe name of the field containing the session
duration => will override default value if set

eventsCounter

firstEventDate-
Time.out.field

the name of the field containing the date of the first
event => will override default value if set

firstEvent-
DateTime

lastEventDate-
Time.out.field

the name of the field containing the date of the last
event => will override default value if set

lastEvent-
DateTime

sessionInactivi-
tyDura-
tion.out.field

the name of the field containing the session
inactivity duration => will override default value if
set

sessionInac-
tivityDura-
tion

ConvertFieldsType

Converts a field value into the given type. does nothing if conversion is not possible

Class

com.hurence.logisland.processor.ConvertFieldsType

Tags

type, fields, update, convert

76 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

Properties

This component has no required or optional properties.

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 1.3: dynamic-properties

Name Value Description EL
field the new type convert field value into new type true

DebugStream

This is a processor that logs incoming records

Class

com.hurence.logisland.processor.DebugStream

Tags

record, debug

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.4: allowable-values

Name Description Allowable Values Default
Value

Sen-
sitive

EL

event.serializerthe way to
serialize
event

Json serialization (serialize events as json blocs), String
serialization (serialize events as toString() blocs)

json

DetectOutliers

Outlier Analysis: A Hybrid Approach

In order to function at scale, a two-phase approach is taken

For every data point

1.7. Components 77

logisland Documentation, Release 0.10.0-rc1

• Detect outlier candidates using a robust estimator of variability (e.g. median absolute deviation) that uses distri-
butional sketching (e.g. Q-trees)

• Gather a biased sample (biased by recency)

• Extremely deterministic in space and cheap in computation

For every outlier candidate

• Use traditional, more computationally complex approaches to outlier analysis (e.g. Robust PCA) on the biased
sample

• Expensive computationally, but run infrequently

This becomes a data filter which can be attached to a timeseries data stream within a distributed computational frame-
work (i.e. Storm, Spark, Flink, NiFi) to detect outliers.

Class

com.hurence.logisland.processor.DetectOutliers

Tags

analytic, outlier, record, iot, timeseries

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

78 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

Table 1.5: allowable-values

Name Description Allowable Values Default Value Sen-
si-
tive

EL

value.field the numeric field to get
the value

record_value

time.field the numeric field to get
the value

record_time

out-
put.record.type

the output type of the
record

alert_match

rota-
tion.policy.type

... by_amount, by_time, never by_amount

rota-
tion.policy.amount

... 100

rota-
tion.policy.unit

... milliseconds, seconds, hours,
days, months, years, points

points

chunk-
ing.policy.type

... by_amount, by_time, never by_amount

chunk-
ing.policy.amount

... 100

chunk-
ing.policy.unit

... milliseconds, seconds, hours,
days, months, years, points

points

sketchy.outlier.algorithm... SKETCHY_MOVING_MAD SKETCHY_MOVING_MAD
batch.outlier.algorithm... RAD RAD
global.statistics.minminimum value null
global.statistics.maxmaximum value null
global.statistics.meanmean value null
global.statistics.stddevstandard deviation value null
zs-
core.cutoffs.normal

zscoreCutoffs level for
normal outlier

0.000000000000001

zs-
core.cutoffs.moderate

zscoreCutoffs level for
moderate outlier

1.5

zs-
core.cutoffs.severe

zscoreCutoffs level for
severe outlier

10.0

zs-
core.cutoffs.notEnoughData

zscoreCutoffs level for
notEnoughData outlier

100

smooth do smoothing ? false
decay the decay 0.1
min.amount.to.predictminAmountToPredict 100
min_zscore_percentileminZscorePercentile 50.0
reservoir_size the size of points

reservoir
100

rpca.force.diff No Description Provided. null
rpca.lpenalty No Description Provided. null
rpca.min.records No Description Provided. null
rpca.spenalty No Description Provided. null
rpca.threshold No Description Provided. null

1.7. Components 79

logisland Documentation, Release 0.10.0-rc1

EnrichRecordsElasticsearch

Enrich input records with content indexed in elasticsearch using multiget queries. Each incoming record must be
possibly enriched with information stored in elasticsearch. The plugin properties are : - es.index (String) : Name of
the elasticsearch index on which the multiget query will be performed. This field is mandatory and should not be
empty, otherwise an error output record is sent for this specific incoming record. - record.key (String) : Name of
the field in the input record containing the id to lookup document in elastic search. This field is mandatory. - es.key
(String) : Name of the elasticsearch key on which the multiget query will be performed. This field is mandatory. -
includes (ArrayList<String>) : List of patterns to filter in (include) fields to retrieve. Supports wildcards. This field
is not mandatory. - excludes (ArrayList<String>) : List of patterns to filter out (exclude) fields to retrieve. Supports
wildcards. This field is not mandatory.

Each outcoming record holds at least the input record plus potentially one or more fields coming from of one elastic-
search document.

Class

com.hurence.logisland.processor.elasticsearch.EnrichRecordsElasticsearch

Tags

elasticsearch

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

80 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

Table 1.6: allowable-values

Name Description Allowable Val-
ues

Default Value Sensitive EL

elasticsearch.client.serviceThe instance of
the Controller
Service to use
for accessing
Elasticsearch.

null

record.key The name of
field in the
input record
containing the
document id
to use in ES
multiget query

null

es.index The name of
the ES index to
use in multiget
query.

null

es.type The name of the
ES type to use in
multiget query.

null

es.includes.field The name of
the ES fields to
include in the
record.

•

es.excludes.field The name of the
ES fields to ex-
clude.

N/A

EvaluateJsonPath

Evaluates one or more JsonPath expressions against the content of a FlowFile. The results of those expressions are
assigned to Records Fields depending on configuration of the Processor. JsonPaths are entered by adding user-defined
properties; the name of the property maps to the Field Name into which the result will be placed. The value of the
property must be a valid JsonPath expression. A Return Type of ‘auto-detect’ will make a determination based off the
configured destination. If the JsonPath evaluates to a JSON array or JSON object and the Return Type is set to ‘scalar’
the Record will be routed to error. A Return Type of JSON can return scalar values if the provided JsonPath evaluates
to the specified value. If the expression matches nothing, Fields will be created with empty strings as the value

Class

com.hurence.logisland.processor.EvaluateJsonPath

Tags

JSON, evaluate, JsonPath

1.7. Components 81

logisland Documentation, Release 0.10.0-rc1

Properties

This component has no required or optional properties.

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 1.7: dynamic-properties

Name Value Description EL
A Record field A JsonPath expression will be set to any JSON objects that match the JsonPath.

FetchHBaseRow

Fetches a row from an HBase table. The Destination property controls whether the cells are added as flow file attributes,
or the row is written to the flow file content as JSON. This processor may be used to fetch a fixed row on a interval by
specifying the table and row id directly in the processor, or it may be used to dynamically fetch rows by referencing
the table and row id from incoming flow files.

Class

com.hurence.logisland.processor.hbase.FetchHBaseRow

Tags

hbase, scan, fetch, get, enrich

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values , and whether a property supports the Expression Language .

FilterRecords

Keep only records based on a given field value

Class

com.hurence.logisland.processor.FilterRecords

Tags

record, fields, remove, delete

82 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.8: allowable-values

Name Description Allowable Values Default Value Sensitive EL
field.name the field name record_id
field.value the field value to keep null

GenerateRandomRecord

This is a processor that make random records given an Avro schema

Class

com.hurence.logisland.processor.GenerateRandomRecord

Tags

record, avro, generator

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.9: allowable-values

Name Description Allowable
Values

Default
Value

Sensi-
tive

EL

avro.output.schemathe avro schema definition for the output
serialization

null

min.events.count the minimum number of generated events
each run

10

max.events.count the maximum number of generated events
each run

200

MatchQuery

Query matching based on Luwak

you can use this processor to handle custom events defined by lucene queries a new record is added to output each
time a registered query is matched

A query is expressed as a lucene query against a field like for example:

1.7. Components 83

http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/

logisland Documentation, Release 0.10.0-rc1

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide for supported operations

Warning: don’t forget to set numeric fields property to handle correctly numeric ranges queries

Class

com.hurence.logisland.processor.MatchQuery

Tags

analytic, percolator, record, record, query, lucene

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.10: allowable-values

Name Description Allowable
Values

Default
Value

Sensi-
tive

EL

numeric.fields a comma separated string of numeric field to
be matched

null

out-
put.record.type

the output type of the record alert_match

in-
clude.input.records

if set to true all the input records are copied
to output

true

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 1.11: dynamic-properties

Name Value Description EL
query some Lucene query generate a new record when this query is matched true

ModifyId

modify id of records or generate it following defined rules

84 Chapter 1. Contents:

https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description

logisland Documentation, Release 0.10.0-rc1

Class

com.hurence.logisland.processor.ModifyId

Tags

record, id, idempotent, generate, modify

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.12: allowable-values

Name Description Allowable Values De-
fault
Value

Sen-
si-
tive

EL

id.generation.strategythe strategy to generate new
Id

generate a random uid (generate a randomUid using
java library), generate a hash from fields (generate a
hash from fields), generate a string from java
pattern and fields (generate a string from java
pattern and fields), generate a concatenation of type,
time and a hash from fields (generate a
concatenation of type, time and a hash from fields
(as for generate_hash strategy))

ran-
do-
mUuid

fields.to.hashthe comma separated list of
field names (e.g. :
‘policyid,date_raw’

record_raw_value

hash.charsetthe charset to use to hash id
string (e.g. ‘UTF-8’)

UTF-
8

hash.algorithmthe algorithme to use to
hash id string (e.g.
‘SHA-256’

SHA-384, SHA-224, SHA-256, MD2, SHA,
SHA-512, MD5

SHA-
256

java.formatter.stringthe format to use to build id
string (e.g. ‘%4$2s %3$2s
%2$2s %1$2s’ (see java
Formatter)

null

lan-
guage.tag

the language to use to
format numbers in string

aa, ab, ae, af, ak, am, an, ar, as, av, ay, az, ba, be, bg,
bh, bi, bm, bn, bo, br, bs, ca, ce, ch, co, cr, cs, cu,
cv, cy, da, de, dv, dz, ee, el, en, eo, es, et, eu, fa, ff,
fi, fj, fo, fr, fy, ga, gd, gl, gn, gu, gv, ha, he, hi, ho,
hr, ht, hu, hy, hz, ia, id, ie, ig, ii, ik, in, io, is, it, iu,
iw, ja, ji, jv, ka, kg, ki, kj, kk, kl, km, kn, ko, kr, ks,
ku, kv, kw, ky, la, lb, lg, li, ln, lo, lt, lu, lv, mg, mh,
mi, mk, ml, mn, mo, mr, ms, mt, my, na, nb, nd, ne,
ng, nl, nn, no, nr, nv, ny, oc, oj, om, or, os, pa, pi, pl,
ps, pt, qu, rm, rn, ro, ru, rw, sa, sc, sd, se, sg, si, sk,
sl, sm, sn, so, sq, sr, ss, st, su, sv, sw, ta, te, tg, th, ti,
tk, tl, tn, to, tr, ts, tt, tw, ty, ug, uk, ur, uz, ve, vi, vo,
wa, wo, xh, yi, yo, za, zh, zu

en

1.7. Components 85

logisland Documentation, Release 0.10.0-rc1

MultiGetElasticsearch

Retrieves a content indexed in elasticsearch using elasticsearch multiget queries. Each incoming record contains
information regarding the elasticsearch multiget query that will be performed. This information is stored in record
fields whose names are configured in the plugin properties (see below) : - index (String) : name of the elasticsearch
index on which the multiget query will be performed. This field is mandatory and should not be empty, otherwise an
error output record is sent for this specific incoming record. - type (String) : name of the elasticsearch type on which
the multiget query will be performed. This field is not mandatory. - ids (String) : comma separated list of document
ids to fetch. This field is mandatory and should not be empty, otherwise an error output record is sent for this specific
incoming record. - includes (String) : comma separated list of patterns to filter in (include) fields to retrieve. Supports
wildcards. This field is not mandatory. - excludes (String) : comma separated list of patterns to filter out (exclude)
fields to retrieve. Supports wildcards. This field is not mandatory.

Each outcoming record holds data of one elasticsearch retrieved document. This data is stored in these fields : - index
(same field name as the incoming record) : name of the elasticsearch index. - type (same field name as the incoming
record) : name of the elasticsearch type. - id (same field name as the incoming record) : retrieved document id. - a list
of String fields containing :

• field name : the retrieved field name

• field value : the retrieved field value

Class

com.hurence.logisland.processor.elasticsearch.MultiGetElasticsearch

Tags

elasticsearch

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.13: allowable-values

Name Description Allowable
Values

Default
Value

Sen-
sitive

EL

elastic-
search.client.service

The instance of the Controller Service to use for
accessing Elasticsearch.

null

es.index.field the name of the incoming records field containing es
index name to use in multiget query.

null

es.type.field the name of the incoming records field containing es
type name to use in multiget query

null

es.ids.field the name of the incoming records field containing es
document Ids to use in multiget query

null

es.includes.field the name of the incoming records field containing es
includes to use in multiget query

null

es.excludes.field the name of the incoming records field containing es
excludes to use in multiget query

null

86 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

NormalizeFields

Changes the name of a field according to a provided name mapping ...

Class

com.hurence.logisland.processor.NormalizeFields

Tags

record, fields, normalizer

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.14: allowable-values

Name Description Allowable Values De-
fault
Value

Sen-
si-
tive

EL

con-
flict.resolution.policy

waht to do when a
field with the same
name already exists
?

nothing to do (leave record as it was), overwrite existing
field (if field already exist), keep only old field and delete
the other (keep only old field and delete the other), keep
old field and new one (creates an alias for the new field)

do_nothing

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 1.15: dynamic-properties

Name Value Description EL
alternative
mapping

a comma separated list of
possible field name

when a field has a name contained in the list it will be
renamed with this property field name

true

ParseBroEvent

The ParseBroEvent processor is the Logisland entry point to get and process Bro events. The Bro-Kafka plugin should
be used and configured in order to have Bro events sent to Kafka. See the Bro/Logisland tutorial for an example of
usage for this processor. The ParseBroEvent processor does some minor pre-processing on incoming Bro events from
the Bro-Kafka plugin to adapt them to Logisland.

Basically the events coming from the Bro-Kafka plugin are JSON documents with a first level field indicating the type
of the event. The ParseBroEvent processor takes the incoming JSON document, sets the event type in a record_type
field and sets the original sub-fields of the JSON event as first level fields in the record. Also any dot in a field name is
transformed into an underscore. Thus, for instance, the field id.orig_h becomes id_orig_h. The next processors in the
stream can then process the Bro events generated by this ParseBroEvent processor.

1.7. Components 87

https://www.bro.org
https://github.com/bro/bro-plugins/tree/master/kafka
http://logisland.readthedocs.io/en/latest/tutorials/indexing-bro-events.html

logisland Documentation, Release 0.10.0-rc1

As an example here is an incoming event from Bro:

{

“conn”: {

“id.resp_p”: 9092,

“resp_pkts”: 0,

“resp_ip_bytes”: 0,

“local_orig”: true,

“orig_ip_bytes”: 0,

“orig_pkts”: 0,

“missed_bytes”: 0,

“history”: “Cc”,

“tunnel_parents”: [],

“id.orig_p”: 56762,

“local_resp”: true,

“uid”: “Ct3Ms01I3Yc6pmMZx7”,

“conn_state”: “OTH”,

“id.orig_h”: “172.17.0.2”,

“proto”: “tcp”,

“id.resp_h”: “172.17.0.3”,

“ts”: 1487596886.953917

}

}

It gets processed and transformed into the following Logisland record by the ParseBroEvent processor:

“@timestamp”: “2017-02-20T13:36:32Z”

“record_id”: “6361f80a-c5c9-4a16-9045-4bb51736333d”

“record_time”: 1487597792782

“record_type”: “conn”

“id_resp_p”: 9092

“resp_pkts”: 0

“resp_ip_bytes”: 0

“local_orig”: true

“orig_ip_bytes”: 0

“orig_pkts”: 0

“missed_bytes”: 0

“history”: “Cc”

“tunnel_parents”: []

88 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

“id_orig_p”: 56762

“local_resp”: true

“uid”: “Ct3Ms01I3Yc6pmMZx7”

“conn_state”: “OTH”

“id_orig_h”: “172.17.0.2”

“proto”: “tcp”

“id_resp_h”: “172.17.0.3”

“ts”: 1487596886.953917

Class

com.hurence.logisland.processor.bro.ParseBroEvent

Tags

bro, security, IDS, NIDS

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.16: allowable-values

Name Description Allowable
Values

Default
Value

Sen-
sitive

EL

de-
bug

Enable debug. If enabled, the original JSON string is embedded
in the record_value field of the record.

null

ParseNetflowEvent

The Netflow V5 processor is the Logisland entry point to process Netflow (V5) events. NetFlow is a feature introduced
on Cisco routers that provides the ability to collect IP network traffic.We can distinguish 2 components:

-Flow exporter: aggregates packets into flows and exports flow records (binary format) towards one or
more flow collectors

-Flow collector: responsible for reception, storage and pre-processing of flow data received from a flow
exporter

The collected data are then available for analysis purpose (intrusion detection, traffic analysis...) Netflow are sent to
kafka in order to be processed by logisland. In the tutorial we will simulate Netflow traffic using nfgen. this traffic
will be sent to port 2055. The we rely on nifi to listen of that port for incoming netflow (V5) traffic and send them to
a kafka topic. The Netflow processor could thus treat these events and generate corresponding logisland records. The
following processors in the stream can then process the Netflow records generated by this processor.

1.7. Components 89

http://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/netflow/nfwhite.html
https://github.com/pazdera/NetFlow-Exporter-Simulator

logisland Documentation, Release 0.10.0-rc1

Class

com.hurence.logisland.processor.netflow.ParseNetflowEvent

Tags

netflow, security

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.17: allowable-values

Name Description Allowable
Values

Default
Value

Sen-
sitive

EL

debug Enable debug. If enabled, the original JSON string is
embedded in the record_value field of the record.

null

out-
put.record.type

the output type of the record netflow-
event

en-
rich.record

Enrich data. If enabledthe netflow record is enriched with
inferred data

false

ParseNetworkPacket

The ParseNetworkPacket processor is the LogIsland entry point to parse network packets captured either off-the-wire
(stream mode) or in pcap format (batch mode). In batch mode, the processor decodes the bytes of the incoming pcap
record, where a Global header followed by a sequence of [packet header, packet data] pairs are stored. Then, each
incoming pcap event is parsed into n packet records. The fields of packet headers are then extracted and made available
in dedicated record fields. See the Capturing Network packets tutorial for an example of usage of this processor.

Class

com.hurence.logisland.processor.networkpacket.ParseNetworkPacket

Tags

PCap, security, IDS, NIDS

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

90 Chapter 1. Contents:

http://logisland.readthedocs.io/en/latest/tutorials/indexing-network-packets.html

logisland Documentation, Release 0.10.0-rc1

Table 1.18: allowable-values

Name Description Allow-
able
Values

De-
fault
Value

Sen-
si-
tive

EL

de-
bug

Enable debug. false

flow.modeFlow Mode. Indicate whether packets are provided in batch mode (via
pcap files) or in stream mode (without headers). Allowed values are
batch and stream.

batch,
stream

null

ParseProperties

Parse a field made of key=value fields separated by spaces a string like “a=1 b=2 c=3” will add a,b & c fields, respec-
tively with values 1,2 & 3 to the current Record

Class

com.hurence.logisland.processor.ParseProperties

Tags

record, properties, parser

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.19: allowable-values

Name Description Allowable
Values

Default
Value

Sensi-
tive

EL

proper-
ties.field

the field containing the properties to split
and treat

null

ParseUserAgent

The user-agent processor allows to decompose User-Agent value from an HTTP header into several attributes of
interest. There is no standard format for User-Agent strings, hence it is not easily possible to use regexp to handle
them. This processor rely on the YAUAA library to do the heavy work.

Class

com.hurence.logisland.processor.useragent.ParseUserAgent

1.7. Components 91

https://github.com/nielsbasjes/yauaa

logisland Documentation, Release 0.10.0-rc1

Tags

User-Agent, clickstream, DMP

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

92 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

Table 1.20: allowable-values

Name Description Al-
low-
able
Val-
ues

Default Value Sen-
si-
tive

EL

de-
bug

Enable debug. false

cache.enabledEnable caching. Caching to avoid
to redo the same computation for
many identical User-Agent
strings.

true

cache.sizeSet the size of the cache. 1000
user-
a-
gent.field

Must contain the name of the
field that contains the User-Agent
value in the incoming record.

null

user-
a-
gent.keep

Defines if the field that contained
the User-Agent must be kept or
not in the resulting records.

true

con-
fi-
dence.enabled

Enable confidence reporting.
Each field will report a
confidence attribute with a value
comprised between 0 and 10000.

false

am-
bigu-
ity.enabled

Enable ambiguity reporting.
Reports a count of ambiguities.

false

fields Defines the fields to be returned. DeviceClass, DeviceName, DeviceBrand,
DeviceCpu, DeviceFirmwareVersion,
DeviceVersion, OperatingSystemClass,
OperatingSystemName,
OperatingSystemVersion,
OperatingSystemNameVersion,
OperatingSystemVersionBuild,
LayoutEngineClass, LayoutEngineName,
LayoutEngineVersion,
LayoutEngineVersionMajor,
LayoutEngineNameVersion,
LayoutEngineNameVersionMajor,
LayoutEngineBuild, AgentClass, AgentName,
AgentVersion, AgentVersionMajor,
AgentNameVersion, AgentNameVersionMajor,
AgentBuild, AgentLanguage,
AgentLanguageCode, AgentInformationEmail,
AgentInformationUrl, AgentSecurity,
AgentUuid, FacebookCarrier,
FacebookDeviceClass, FacebookDeviceName,
FacebookDeviceVersion, FacebookFBOP,
FacebookFBSS,
FacebookOperatingSystemName,
FacebookOperatingSystemVersion,
Anonymized, HackerAttackVector,
HackerToolkit, KoboAffiliate, KoboPlatformId,
IECompatibilityVersion,
IECompatibilityVersionMajor,
IECompatibilityNameVersion,
IECompatibilityNameVersionMajor,
__SyntaxError__, Carrier, GSAInstallationID,
WebviewAppName,
WebviewAppNameVersionMajor,
WebviewAppVersion,
WebviewAppVersionMajor

1.7. Components 93

logisland Documentation, Release 0.10.0-rc1

PutHBaseCell

Adds the Contents of a Record to HBase as the value of a single cell

Class

com.hurence.logisland.processor.hbase.PutHBaseCell

Tags

hadoop, hbase

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values , and whether a property supports the Expression Language .

94 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

Table 1.21: allowable-values

Name Description Allowable Values Default
Value

Sen-
si-
tive

EL

hbase.client.serviceThe instance of the Controller Service
to use for accessing HBase.

null

ta-
ble.name.field

The field containing the name of the
HBase Table to put data into

null true

row.identifier.fieldSpecifies field containing the Row ID
to use when inserting data into HBase

null true

row.identifier.encoding.strategySpecifies the data type of Row ID
used when inserting data into HBase.
The default behavior is to convert the
row id to a UTF-8 byte array.
Choosing Binary will convert a
binary formatted string to the correct
byte[] representation. The Binary
option should be used if you are using
Binary row keys in HBase

String (Stores the value of row id as a
UTF-8 String.), Binary (Stores the
value of the rows id as a binary byte
array. It expects that the row id is a
binary formatted string.)

String

col-
umn.family.field

The field containing the Column
Family to use when inserting data
into HBase

null true

col-
umn.qualifier.field

The field containing the Column
Qualifier to use when inserting data
into HBase

null true

batch.sizeThe maximum number of Records to
process in a single execution. The
Records will be grouped by table, and
a single Put per table will be
performed.

25

record.schemathe avro schema definition for the
Avro serialization

null

record.serializerthe serializer needed to i/o the record
in the HBase row

kryo serialization (serialize events as
json blocs), json serialization
(serialize events as json blocs), avro
serialization (serialize events as avro
blocs), no serialization (send events
as bytes)

com.hurence.logisland.serializer.KryoSerializer

ta-
ble.name.default

The table table to use if table name
field is not set

null

col-
umn.family.default

The column family to use if column
family field is not set

null

col-
umn.qualifier.default

The column qualifier to use if column
qualifier field is not set

null

RemoveFields

Removes a list of fields defined by a comma separated list of field names

1.7. Components 95

logisland Documentation, Release 0.10.0-rc1

Class

com.hurence.logisland.processor.RemoveFields

Tags

record, fields, remove, delete

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.22: allowable-values

Name Description Allowable
Values

Default
Value

Sensi-
tive

EL

fields.to.removethe comma separated list of field names (e.g.
‘policyid,date_raw’

null

RunPython

!!!! WARNING !!!!

The RunPython processor is currently an experimental feature : it is delivered as is, with the current set of features and
is subject to modifications in API or anything else in further logisland releases without warnings. There is no tutorial
yet. If you want to play with this processor, use the python-processing.yml example and send the apache logs of the
index apache logs tutorial. The debug stream processor at the end of the stream should output events in stderr file of
the executors from the spark console.

This processor allows to implement and run a processor written in python. This can be done in 2 ways. Either
directly defining the process method code in the script.code.process configuration property or poiting to an external
python module script file in the script.path configuration property. Directly defining methods is called the inline
mode whereas using a script file is called the file mode. Both ways are mutually exclusive. Whether using the inline
of file mode, your python code may depend on some python dependencies. If the set of python dependencies already
delivered with the Logisland framework is not sufficient, you can use the dependencies.path configuration property
to give their location. Currently only the nltk python library is delivered with Logisland.

Class

com.hurence.logisland.processor.scripting.python.RunPython

Tags

scripting, python

96 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.23: allowable-values

Name Description Allow-
able
Values

De-
fault
Value

Sen-
si-
tive

EL

script.code.importsFor inline mode only. This is the pyhton code that should hold the
import statements if required.

null

script.code.initThe python code to be called when the processor is initialized. This
is the python equivalent of the init method code for a java
processor. This is not mandatory but can only be used if
script.code.process is defined (inline mode).

null

script.code.processThe python code to be called to process the records. This is the
pyhton equivalent of the process method code for a java processor.
For inline mode, this is the only minimum required configuration
property. Using this property, you may also optionally define the
script.code.init and script.code.imports properties.

null

script.path The path to the user’s python processor script. Use this property for
file mode. Your python code must be in a python file with the
following constraints: let’s say your pyhton script is named
MyProcessor.py. Then MyProcessor.py is a module file that must
contain a class named MyProcessor which must inherits from the
Logisland delivered class named AbstractProcessor. You can then
define your code in the process method and in the other traditional
methods (init...) as you would do in java in a class inheriting from
the AbstractProcessor java class.

null

dependen-
cies.path

The path to the additional dependencies for the user’s python code,
whether using inline or file mode. This is optional as your code
may not have additional dependencies. If you defined script.path
(so using file mode) and if dependencies.path is not defined,
Logisland will scan a potential directory named dependencies in
the same directory where the script file resides and if it exists, any
python code located there will be loaded as dependency as needed.

null

logis-
land.dependencies.path

The path to the directory containing the python dependencies
shipped with logisland. You should not have to tune this parameter.

null

SampleRecords

Query matching based on Luwak

you can use this processor to handle custom events defined by lucene queries a new record is added to output each
time a registered query is matched

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

1.7. Components 97

http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/

logisland Documentation, Release 0.10.0-rc1

Please read the Lucene syntax guide for supported operations

Warning: don’t forget to set numeric fields property to handle correctly numeric ranges queries

Class

com.hurence.logisland.processor.SampleRecords

Tags

analytic, sampler, record, iot, timeseries

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.24: allowable-values

Name Description Allowable Values Default
Value

Sen-
sitive

EL

record.value.field the name of the numeric
field to sample

record_value

record.time.field the name of the time field
to sample

record_time

sam-
pling.algorithm

the implementation of the
algorithm

none, lttb, average, first_item,
min_max, mode_median

null

sam-
pling.parameter

the parmater of the
algorithm

null

SelectDistinctRecords

Keep only distinct records based on a given field

Class

com.hurence.logisland.processor.SelectDistinctRecords

Tags

record, fields, remove, delete

98 Chapter 1. Contents:

https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description

logisland Documentation, Release 0.10.0-rc1

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.25: allowable-values

Name Description Allowable Values Default Value Sensitive EL
field.name the field to distinct records record_id

SendMail

The SendMail processor is aimed at sending an email (like for instance an alert email) from an incoming record. There
are three ways an incoming record can generate an email according to the special fields it must embed. Here is a list
of the record fields that generate a mail and how they work:

• mail_text: this is the simplest way for generating a mail. If present, this field means to use its content (value)
as the payload of the mail to send. The mail is sent in text format if there is only this special field in the record.
Otherwise, used with either mail_html or mail_use_template, the content of mail_text is the aletrnative text to
the HTML mail that is generated.

• mail_html: this field specifies that the mail should be sent as HTML and the value of the field is mail payload.
If mail_text is also present, its value is used as the alternative text for the mail. mail_html cannot be used with
mail_use_template: only one of those two fields should be present in the record.

• mail_use_template: If present, this field specifies that the mail should be sent as HTML and the HTML content
is to be generated from the template in the processor configuration key html.template. The template can contain
parameters which must also be present in the record as fields. See documentation of html.template for further
explanations. mail_use_template cannot be used with mail_html: only one of those two fields should be present
in the record.

If allow_overwrite configuration key is true, any mail.* (dot format) configuration key may be over-
written with a matching field in the record of the form mail_* (underscore format). For instance if al-
low_overwrite is true and mail.to is set to config_address@domain.com, a record generating a mail with
a mail_to field set to record_address@domain.com will send a mail to record_address@domain.com.

Apart from error records (when he is unable to process the incoming record or to send the mail), this
processor is not expected to produce any output records.

Class

com.hurence.logisland.processor.SendMail

Tags

smtp, email, e-mail, mail, mailer, sendmail, message, alert, html

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

1.7. Components 99

mailto:config_address@domain.com
mailto:record_address@domain.com
mailto:record_address@domain.com

logisland Documentation, Release 0.10.0-rc1

Table 1.26: allowable-values

Name Description Allow-
able
Val-
ues

Default
Value

Sen-
si-
tive

EL

debug Enable debug. If enabled, debug information are written to
stdout.

false

smtp.serverFQDN, hostname or IP address of the SMTP server to use. null
smtp.port TCP port number of the SMTP server to use. 25
smtp.security.usernameSMTP username. null
smtp.security.passwordSMTP password. null
smtp.security.sslUse SSL under SMTP or not (SMTPS). Default is false. false
mail.from.addressValid mail sender email address. null
mail.from.nameMail sender name. null
mail.bounce.addressValid bounce email address (where error mail is sent if the mail

is refused by the recipient server).
null

mail.replyto.addressReply to email address. null
mail.subjectMail subject. [LOGIS-

LAND]
Automatic
email

mail.to Comma separated list of email recipients. If not set, the record
must have a mail_to field and allow_overwrite configuration
key should be true.

null

al-
low_overwrite

If true, allows to overwrite processor configuration with special
record fields (mail_to, mail_from_address, mail_from_name,
mail_bounce_address, mail_replyto_address, mail_subject). If
false, special record fields are ignored and only processor
configuration keys are used.

true

html.templateHTML template to use. It is used when the incoming record
contains a mail_use_template field. The template may contain
some parameters. The parameter format in the template is of
the form ${xxx}. For instance ${param_user} in the template
means that a field named param_user must be present in the
record and its value will replace the ${param_user} string in the
HTML template when the mail will be sent. If some parameters
are declared in the template, everyone of them must be present
in the record as fields, otherwise the record will generate an
error record. If an incoming record contains a
mail_use_template field, a template must be present in the
configuration and the HTML mail format will be used. If the
record also contains a mail_text field, its content will be used as
an alternative text message to be used in the mail reader
program of the recipient if it does not supports HTML.

null

SplitText

This is a processor that is used to split a String into fields according to a given Record mapping

100 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

Class

com.hurence.logisland.processor.SplitText

Tags

parser, regex, log, record

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.27: allowable-values

Name Description Allowable
Values

Default
Value

Sen-
sitive

EL

value.regex the regex to match for the message value null
value.fields a comma separated list of fields corresponding to

matching groups for the message value
null

key.regex the regex to match for the message key .*
key.fields a comma separated list of fields corresponding to

matching groups for the message key
record_raw_key

record.type default type of record record
keep.raw.contentdo we add the initial raw content ? true
time-
zone.record.time

what is the time zone of the string formatted date for
‘record_time’ field.

UTC

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 1.28: dynamic-properties

Name Value Description EL
alternative regex
& mapping

another regex that
could match

this regex will be tried if the main one has not matched. It must be
in the form alt.value.regex.1 and alt.value.fields.1

true

See Also:

com.hurence.logisland.processor.SplitTextMultiline

SplitTextMultiline

No description provided.

1.7. Components 101

logisland Documentation, Release 0.10.0-rc1

Class

com.hurence.logisland.processor.SplitTextMultiline

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

Table 1.29: allowable-values

Name Description Allowable
Values

Default
Value

Sensi-
tive

EL

regex the regex to match null
fields a comma separated list of fields corresponding to

matching groups
null

event.type the type of event null

SplitTextWithProperties

This is a processor that is used to split a String into fields according to a given Record mapping

Class

com.hurence.logisland.processor.SplitTextWithProperties

Tags

parser, regex, log, record

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered
optional. The table also indicates any default values .

102 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

Table 1.30: allowable-values

Name Description Allowable
Values

Default
Value

Sen-
sitive

EL

value.regex the regex to match for the message value null
value.fields a comma separated list of fields corresponding to

matching groups for the message value
null

key.regex the regex to match for the message key .*
key.fields a comma separated list of fields corresponding to

matching groups for the message key
record_raw_key

record.type default type of record record
keep.raw.contentdo we add the initial raw content ? true
proper-
ties.field

the field containing the properties to split and treat properties

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

Table 1.31: dynamic-properties

Name Value Description EL
alternative regex
& mapping

another regex that
could match

this regex will be tried if the main one has not matched. It must be
in the form alt.value.regex.1 and alt.value.fields.1

true

See Also:

com.hurence.logisland.processor.SplitTextMultiline

What’s new in logisland ?

v0.9.7

• add HDFS burner feature processor #89

• add ExtractJsonPath processor #90

• check compatibility with HDP 2.5 #112

• sometimes the drivers fails with status SUCCEEDED which prevents YARN to resubmit the job automatically
#105

• logisland crashes when starting with wrong offsets #111

• add type checking for SplitText component enhancement #46

• add optional regex to SplitText #106

• add record schema management with ConvertFieldsType processor #75

• add field auto extractor processor : SplitTextWithProperties #49

• add a new RemoveFields processor

• add a NormalizeFields processor #88

1.8. What’s new in logisland ? 103

logisland Documentation, Release 0.10.0-rc1

• Add notion of asserting the asserted fields in MockRecord

v0.9.6

• add a Documentation generator for plugins feature #69

• add SQL aggregator plugin feature #74

• #66 merge elasticsearch-shaded and elasticsearch-plugin enhancement

• #73 add metric aggregator processor feature

• #57 add sampling processor enhancement

• #72 integrate OutlierDetection plugin feature

• #34 integrate QueryMatcherProcessor bug

v0.9.5

• generify API from Event to Records

• add docker container for demo

• add topic auto-creation parameters

• add Record validators

• add processor chaining that works globally on an input/output topic and pipe in-memory contexts into sub-
processors

• better error handling for SplitText

• testRunner API

• migrate LogParser to LogProcessor Interface

• reporting metrics to know where are exactly the processors on the topics

• add an HDFSBurner Engine

• yarn stability improvements

• more spark parameters handling

• driver failover through Zookeper offset checkpointing

• add raw_content to event if regex matching failed in SplitText

• integration testing with embedded Kafka/Spark

• processor chaining

•

Frequently Asked Questions.

I already use ELK, why would I need to use LogIsland ?

Well, at first one could say that that both stacks are overlapping, but the real purpose of the LogIsland framework is
the abstraction of scalability of log aggregation.

104 Chapter 1. Contents:

logisland Documentation, Release 0.10.0-rc1

In fact if you already have an ELK stack you’ll likely want to make it scale (without pain) in both volume and features
ways. LogIsland will be used for this purpose as an EOM (Event Oriented Middleware) based on Kafka & Spark,
where you can plug advanced features with ease.

So you just have to route your logs from the Logstash (or Flume, or Collectd, ...) agents to Kafka topics and launch
parsers and processors.

Do I need Hadoop to play with LogIsland ?

No, if your goal is simply to aggregate a massive amount of logs in an Elasticsearch cluster, and to define complex
event processing rules to generate new events you definitely don’t need an Hadoop cluster.

Kafka topics can be used as an high throughput log buffer for sliding-windows event processing. But if you need
advanced batch analytics, it’s really easy to dump your logs into an hadoop cluster to build machine learning models.

How do I make it scale ?

LogIsland is made for scalability, it relies on Spark and Kafka which are both scalable by essence, to scale LogIsland
just have to add more kafka brokers and more Spark slaves. This is the manual way, but we’ve planned in further
releases to provide auto-scaling either Docker Swarn support or Mesos Marathon.

What’s the difference between Apache NIFI and LogIsland ?

Apache NIFI is a powerful ETL very well suited to process incoming data such as logs file, process & enrich them and
send them out to any datastore. You can do that as well with LogIsland but LogIsland is an event oriented framework
designed to process huge amount of events in a Complex Event Processing manner not a Single Event Processing as
NIFI does. LogIsland is not an ETL or a DataFlow, the main goal is to extract information from realtime data.

Anyway you can use Apache NIFI to process your logs and send them to Kafka in order to be processed by LogIsland

Error : realpath not found

If you don’t have the realpath command on you system you may need to install it:

brew install coreutils
sudo apt-get install coreutils

How to deploy LogIsland as a Single node Docker container

The easy way : you start a small Docker container with all you need inside (Elasticsearch, Kibana, Kafka, Spark,
LogIsland + some usefull tools)

Docker is becoming an unavoidable tool to isolate a complex service component. It’s easy to manage, deploy and
maintain. That’s why you can start right away to play with LogIsland through the Docker image provided from
Docker HUB

Get the LogIsland image
docker pull hurence/logisland

Run the container
docker run \

-it \

1.9. Frequently Asked Questions. 105

https://www.docker.com
https://hub.docker.com/r/hurence/logisland/

logisland Documentation, Release 0.10.0-rc1

-p 80:80 \
-p 9200-9300:9200-9300 \
-p 5601:5601 \
-p 2181:2181 \
-p 9092:9092 \
-p 9000:9000 \
-p 4050-4060:4050-4060 \
--name logisland \
-h sandbox \
hurence/logisland:latest bash

Connect a shell to your LogIsland container
docker exec -ti logisland bash

How to deploy LogIsland in an Hadoop cluster ?

When it comes to scale, you’ll need a cluster. logisland is just a framework that facilitates running sparks jobs over
Kafka topics so if you already have a cluster you just have to get the latest logisland binaries and unzip them to a edge
node of your hadoop cluster.

For now Log-Island is fully compatible with HDP 2.4 but it should work well on any cluster running Kafka and Spark.
Get the latest release and build the package.

You can download the latest release build

git clone git@github.com:Hurence/logisland.git
cd logisland-0.9.5
mvn clean install -DskipTests

This will produce a logisland-assembly/target/logisland-0.9.5-bin.tar.gz file that you can
untar into any folder of your choice in a edge node of your cluster.

Please read this excellent article on spark long running job setup : http://mkuthan.github.io/blog/2016/09/30/
spark-streaming-on-yarn/

How can I configure Kafka to avoid irrecoverable exceptions ?

If the message must be reliable published on Kafka cluster, Kafka producer and Kafka cluster needs to be configured
with care. It needs to be done independently of chosen streaming framework.

Kafka producer buffers messages in memory before sending. When our memory buffer is exhausted, Kafka producer
must either stop accepting new records (block) or throw errors. By default Kafka producer blocks and this behavior is
legitimate for stream processing. The processing should be delayed if Kafka producer memory buffer is full and could
not accept new messages. Ensure that block.on.buffer.full Kafka producer configuration property is set.

With default configuration, when Kafka broker (leader of the partition) receive the message, store the message in
memory and immediately send acknowledgment to Kafka producer. To avoid data loss the message should be repli-
cated to at least one replica (follower). Only when the follower acknowledges the leader, the leader acknowledges the
producer.

This guarantee you will get with ack=all property in Kafka producer configuration. This guarantees that the record
will not be lost as long as at least one in-sync replica remains alive.

But this is not enough. The minimum number of replicas in-sync must be defined. You should configure
min.insync.replicas property for every topic. I recommend to configure at least 2 in-sync replicas (leader and one

106 Chapter 1. Contents:

https://github.com/Hurence/logisland/releases/download/v0.9.5/logisland-0.9.5-bin.tar.gz
http://mkuthan.github.io/blog/2016/09/30/spark-streaming-on-yarn/
http://mkuthan.github.io/blog/2016/09/30/spark-streaming-on-yarn/

logisland Documentation, Release 0.10.0-rc1

follower). If you have datacenter with two zones, I also recommend to keep leader in the first zone and 2 followers in
the second zone. This configuration guarantees that every message will be stored in both zones.

We are almost done with Kafka cluster configuration. When you set min.insync.replicas=2 property, the topic should
be replicated with factor 2 + N. Where N is the number of brokers which could fail, and Kafka producer will still be
able to publish messages to the cluster. I recommend to configure replication factor 3 for the topic (or more).

With replication factor 3, the number of brokers in the cluster should be at least 3 + M. When one or more brokers are
unavailable, you will get underreplicated partitions state of the topics. With more brokers in the cluster than replication
factor, you can reassign underreplicated partitions and achieve fully replicated cluster again. I recommend to build the
4 nodes cluster at least for topics with replication factor 3.

The last important Kafka cluster configuration property is unclean.leader.election.enable. It should be disabled (by
default it is enabled) to avoid unrecoverable exceptions from Kafka consumer. Consider the situation when the latest
committed offset is N, but after leader failure, the latest offset on the new leader is M < N. M < N because the new
leader was elected from the lagging follower (not in-sync replica). When the streaming engine ask for data from offset
N using Kafka consumer, it will get an exception because the offset N does not exist yet. Someone will have to fix
offsets manually.

So the minimal recommended Kafka setup for reliable message processing is:

4 nodes in the cluster
unclean.leader.election.enable=false in the brokers configuration
replication factor for the topics - 3
min.insync.replicas=2 property in topic configuration
ack=all property in the producer configuration
block.on.buffer.full=true property in the producer configuration

With the above setup your configuration should be resistant to single broker failure, and Kafka consumers will survive
new leader election.

You could also take look at replica.lag.max.messages and replica.lag.time.max.ms properties for tuning when the
follower is removed from ISR by the leader. But this is out of this blog post scope.

How to purge a Kafka queue ?

Temporarily update the retention time on the topic to one second:

kafka-topics.sh --zookeeper localhost:13003 --alter --topic MyTopic --config
→˓retention.ms=1000

then wait for the purge to take effect (about one minute). Once purged, restore the previous retention.ms value.

You can also try to delete the topic :

add one line to server.properties file under config folder:

delete.topic.enable=true

then, you can run this command:

bin/kafka-topics.sh --zookeeper localhost:2181 --delete --topic test

1.9. Frequently Asked Questions. 107

logisland Documentation, Release 0.10.0-rc1

108 Chapter 1. Contents:

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

109

	Contents:
	Introduction
	Core concepts
	Architecture
	Developer Guide
	Tutorials
	API design
	Components
	What's new in logisland ?
	Frequently Asked Questions.

	Indices and tables

