

Welcome to logisland’s documentation!

Chat with us on Gitter

[image: Gitter]
 [https://gitter.im/logisland/logisland?utm_source=share-link&utm_medium=link&utm_campaign=share-link]Download the latest release build [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

Contents:

	Introduction

	Core concepts
	What is a pattern ?

	From raw to structure

	Event pattern mining

	Architecture
	Data driven architecture

	Technical design

	Developer Guide
	Workflows

	Build the code and run the tests

	Prerequisites

	Building

	Release to maven repositories

	Publish Docker image

	Publish artifact to github

	Tutorials
	Index Apache logs

	Index Apache logs Enrichment

	Alerts & Query Matching

	Time series sampling & Outliers detection

	Bro/Logisland integration - Indexing Bro events

	Netflow/Logisland integration - Handling Netflow traffic

	Capturing Network packets in Logisland

	API design
	Java API

	REST API

	Components
	BulkAddElasticsearch

	ConsolidateSession

	ConvertFieldsType

	DebugStream

	DetectOutliers

	EnrichRecordsElasticsearch

	EvaluateJsonPath

	FetchHBaseRow

	FilterRecords

	GenerateRandomRecord

	MatchQuery

	ModifyId

	MultiGetElasticsearch

	NormalizeFields

	ParseBroEvent

	ParseNetflowEvent

	ParseNetworkPacket

	ParseProperties

	ParseUserAgent

	PutHBaseCell

	RemoveFields

	RunPython

	SampleRecords

	SelectDistinctRecords

	SendMail

	SplitText

	SplitTextMultiline

	SplitTextWithProperties

	What’s new in logisland ?
	v0.9.7

	v0.9.6

	v0.9.5

	Frequently Asked Questions.
	I already use ELK, why would I need to use LogIsland ?

	Do I need Hadoop to play with LogIsland ?

	How do I make it scale ?

	What’s the difference between Apache NIFI and LogIsland ?

	Error : realpath not found

	How to deploy LogIsland as a Single node Docker container

	How to deploy LogIsland in an Hadoop cluster ?

	How can I configure Kafka to avoid irrecoverable exceptions ?

	How to purge a Kafka queue ?

Indices and tables

	Index

	Module Index

	Search Page

Introduction

you can find a quick presentation below :

 Core concepts

Core concepts

The main goal of LogIsland framework is to provide tools to automatically extract valuable knowledge from historical log data. To do so we need two different kind of processing over our technical stack :

	Grab events from logs

	Perform Event Pattern Mining (EPM)

What we know about Log/Event properties :

	they’re naturally temporal

	they carry a global type (user request, error, operation, system failure...)

	they’re semi-structured

	they’re produced by software, so we can deduce some templates from them

	some of them are correlated

	some of them are frequent (or rare)

	some of them are monotonic

	some of them are of great interest for system operators

What is a pattern ?

Patterns, actually are a set of items subsequences or substructures that occur frequently together in a data set we call this strongly correlated.
Patterns usually represent intrinsic and important properties of data.

From raw to structure

The first part of the process is to extract semantics from semi-structured data such as logs.
The main objective of this phase is to introduce a canonical semantics in log data that we will call Event which will be easier for us to process with data mining algorithm

	log parser

	log classification/clustering

	event generation

	event summarization

Event pattern mining

Once we have a cannonical semantic in the form of events we can perform time window processing over our events set. All the algorithms we can run on it will help us to find some of the following properties :

	sequential patterns

	events burst

	frequent pattern

	rare event

	highly correlated events

	correlation between time series & events

 Architecture

Architecture

Is there something clever out there ?

Most of the systems in this data world can be observables through their events.
You just have to look at the event sourcing pattern [https://msdn.microsoft.com/en-us/library/dn589792.aspx] to get an idea of how we could define any system state as a sequence of temporal events. The main source of events are the logs files, application logs, transaction logs, sensor data, etc.

Large and complex systems, made of number of heterogeneous components are not easy to monitor, especially when have to deal with distributed computing. Most of the time of IT resources is spent in maintenance tasks, so there’s a real need for tools to help achieving them.

Note

Basicaly LogIsland will help us to handle system events from log files.

Data driven architecture

[image: _images/data-driven-computing.png]

Technical design

LogIsland is an event processing framework based on Kafka and Spark. The main goal of this Open Source platform is to
abstract the level of complexity of complex event processing at scale. Of course many people start with an ELK stack,
which is really great but not enough to elaborate a really complete system monitoring tool.
So with LogIsland, you’ll move the log processing burden to a powerful distributed stack.

Kafka acts a the distributed message queue middleware while Spark is the core of the distributed processing.
LogIsland glue those technologies to simplify log complex event processing at scale.

[image: _images/logisland-workflow.png]

 Developer Guide

Developer Guide

This document summarizes information relevant to logisland committers and contributors.
It includes information about the development processes and policies as well as the tools we use to facilitate those.

Workflows

This section explains how to perform common activities such as reporting a bug or merging a pull request.

Coding Guidelines

Basic

	Avoid cryptic abbreviations. Single letter variable names are fine in very short methods with few variables, otherwise make them informative.

	Clear code is preferable to comments. When possible make your naming so good you don’t need comments. When that isn’t possible comments should be thought of as mandatory, write them to be read.

	Logging, configuration, and public APIs are our “UI”. Make them pretty, consistent, and usable.

	Maximum line length is 130.

	Don’t leave TODOs in the code or FIXMEs if you can help it. Don’t leave println statements in the code. TODOs should be filed as github issues.

	User documentation should be considered a part of any user-facing the feature, just like unit tests. Example REST apis should’ve accompanying documentation.

	Tests should never rely on timing in order to pass.

	Every unit test should leave no side effects, i.e., any test dependencies should be set during setup and clean during tear down.

Java

	Apache license headers. Make sure you have Apache License headers in your files.

	Tabs vs. spaces. We are using 4 spaces for indentation, not tabs.

	Blocks. All statements after if, for, while, do, … must always be encapsulated in a block with curly braces (even if the block contains one statement):

for (...) {
 ...
}

	No wildcard imports.

	No unused imports. Remove all unused imports.

	No raw types. Do not use raw generic types, unless strictly necessary (sometime necessary for signature matches, arrays).

	Suppress warnings. Add annotations to suppress warnings, if they cannot be avoided (such as “unchecked”, or “serial”).

	Comments. Add JavaDocs to public methods or inherit them by not adding any comments to the methods.

	logger instance should be upper case LOG.

	When in doubt refer to existing code or Java Coding Style [http://google.github.io/styleguide/javaguide.html] except line breaking, which is described above.

Logging

	Please take the time to assess the logs when making a change to ensure that the important things are getting logged and there is no junk there.

	There are six levels of logging TRACE, DEBUG, INFO, WARN, ERROR, and FATAL, they should be used as follows.

	2.1. INFO is the level you should assume the software will be run in.

	INFO messages are things which are not bad but which the user will definitely want to know about
every time they occur.

	2.2 TRACE and DEBUG are both things you turn on when something is wrong and you want to figure out

	what is going on. DEBUG should not be so fine grained that it will seriously effect the performance
of the server. TRACE can be anything. Both DEBUG and TRACE statements should be
wrapped in an if(logger.isDebugEnabled) if an expensive computation in the argument list of log method call.

	2.3. WARN and ERROR indicate something that is bad. Use WARN if you aren’t totally sure it is bad,

	and ERROR if you are.

2.4. Use FATAL only right before calling System.exit().

	Logging statements should be complete sentences with proper capitalization that are written to be read by a person not necessarily familiar with the source code.

	
	String appending using StringBuilders should not be used for building log messages.

	Formatting should be used. For ex:
LOG.debug(“Loaded class [{}] from jar [{}]”, className, jarFile);

TimeZone in Tests

Your environment jdk can be different than travis ones. Be aware that there is changes on TimeZone objects between different
version of jdk... Even between 8.x.x versions.
For example TimeZone “America/Cancun” may not give the same date in your environment than in travis one...

Contribute code

Create a pull request

Pull requests should be done against the read-only git repository at
https://github.com/hurence/logisland.

Take a look at Creating a pull request [https://help.github.com/articles/creating-a-pull-request]. In a nutshell you
need to:

	Fork [https://help.github.com/articles/fork-a-repo] the Logisland GitHub repository at
https://github.com/hurence/logisland to your personal GitHub
account. See Fork a repo [https://help.github.com/articles/fork-a-repo] for detailed instructions.

	Commit any changes to your fork.

	Send a pull request [https://help.github.com/articles/creating-a-pull-request] to the Logisland GitHub repository
that you forked in step 1. If your pull request is related to an existing IoTaS github issue ticket – for instance, because
you reported a bug report via github issue earlier – then prefix the title of your pull request with the corresponding github issue
ticket number (e.g. IOT-123: ...).

You may want to read Syncing a fork [https://help.github.com/articles/syncing-a-fork] for instructions on how to keep
your fork up to date with the latest changes of the upstream Streams repository.

Git Commit Messages Format

The Git commit messages must be standardized as follows:

LOGISLAND-XXX: Title matching exactly the github issue Summary (title)

	An optional, bulleted (+, -, ., *), summary of the contents of

	the patch. The goal is not to describe the contents of every file,

	but rather give a quick overview of the main functional areas

	addressed by the patch.

The text immediately following the github issue number (LOGISLAND-XXX:) must be an exact transcription of the github issue summary (title), not the a summary of the contents of the patch.

If the github issue summary does not accurately describe what the patch is addressing, the github issue summary must be modified, and then copied to the Git commit message.

A summary with the contents of the patch is optional but strongly encouraged if the patch is large and/or the github issue title is not expressive enough to describe what the patch is doing. This text must be bulleted using one of the following bullet points (+, -, .,). There must be at last a 1 space indent before the bullet char, and exactly one space between bullet char and the first letter of the text. Bullets are not optional, but required*.

Merge a pull request or patch

To pull in a merge request you should generally follow the command line instructions sent out by GitHub.

	Go to your local copy of the [Apache git repo](https://github.com/hurence/logisland.git), switch
to the master branch, and make sure it is up to date.

git checkout master
git fetch origin
git merge origin/master

	Create a local branch for integrating and testing the pull request. You may want to name the branch according to the
Logisland github issue ticket associated with the pull request (example: LOGISLAND-1234).

git checkout -b <local_test_branch> # e.g. git checkout -b LOGISLAND-1234

	Merge the pull request into your local test branch.

git pull <remote_repo_url> <remote_branch>

	Assuming that the pull request merges without any conflicts:
Update the top-level changes.rst, and add in the github issue ticket number (example: LOGISLAND-1234) and ticket
description to the change log. Make sure that you place the github issue ticket number in the commit comments where
applicable.

	Run any sanity tests that you think are needed.

	Once you are confident that everything is ok, you can merge your local test branch into your local master branch,
and push the changes back to the hurence repo.

Pull request looks ok, change log was updated, etc. We are ready for pushing.
git checkout master
git merge <local_test_branch> # e.g. git merge LOGISLAND-1234

At this point our local master branch is ready, so now we will push the changes
to the official repo.
git push origin HEAD:refs/heads/master

	The last step is updating the corresponding github issue ticket. [Go to github issue](https://hwxiot.atlassian.net)
and resolve the ticket.

Build the code and run the tests

Prerequisites

First of all you need to make sure you are using maven 3.2.5 or higher and JDK 1.8 or higher.

Building

The following commands must be run from the top-level directory.

mvn clean install -Dhdp=2.4 # or -Dhdp=2.5

If you wish to skip the unit tests you can do this by adding -DskipTests to the command line.

Release to maven repositories

to release artifacts (if you’re allowed to), follow this guide release to OSS Sonatype with maven [http://central.sonatype.org/pages/apache-maven.html]

mvn versions:set -DnewVersion=0.10.0-rc1
mvn license:format
mvn test
mvn -DperformRelease=true clean deploy
mvn versions:commit

git tag -a v0.10.0-rc1 -m "new logisland release 0.10.0-rc1"
git push origin v0.10.0-rc1

follow the staging procedure in oss.sonatype.org [https://oss.sonatype.org/#stagingRepositories] or read Sonatype book [http://books.sonatype.com/nexus-book/reference/staging-deployment.html#staging-maven]

go to oss.sonatype.org [https://oss.sonatype.org/#stagingRepositories] to release manually the artifact

Publish Docker image

Building the image

build logisland
mvn clean install -DskipTests -Pdocker -Dhdp=2.4

verify image build
docker images

then login and push the latest image

docker login
docker push hurence/logisland

Publish artifact to github

Tag the release + upload latest tgz

 Tutorials

Tutorials

Chat with us on Gitter

[image: Gitter]
 [https://gitter.im/logisland/logisland?utm_source=share-link&utm_medium=link&utm_campaign=share-link]Download the latest release build [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

Contents:

	Index Apache logs
	1. Start LogIsland as a Docker container

	2. Parse the logs records

	3. Inject some Apache logs into the system

	4. Monitor your spark jobs and Kafka topics

	5. Use Kibana to inspect the logs

	Index Apache logs Enrichment
	1. Start LogIsland as a Docker container

	2. Inject some Apache logs into the system

	3. Monitor your spark jobs and Kafka topics

	4. Use Kibana to inspect the logs

	Alerts & Query Matching
	1. Setup SQL Aggregation Stream

	2. Setup Query matching Stream on log Records

	3. Setup Query matching Stream

	4. Start logisland application

	5. Check your alerts with Kibana

	Time series sampling & Outliers detection
	1. Setup the time series collection Stream

	2. Setup the Outliers detection Stream

	3. Setup the time series Sampling Stream

	4. Setup the indexing Stream

	4. Start logisland application

	5. Check your alerts with Kibana

	Bro/Logisland integration - Indexing Bro events
	Bro and Logisland

	Tutorial environment

	1. Start the Docker container with LogIsland

	2. Transform Bro events into Logisland records

	3. Start the Docker container with Bro

	4. Configure Bro to send events to Kafka

	5. Generate some Bro events and notices

	Netflow/Logisland integration - Handling Netflow traffic
	Netflow and Logisland

	Tutorial environment

	1. Start LogIsland as a Docker container

	2. Configuration steps

	3. Parse Netflow records

	4. Inject Netflow events into the system

	5. Monitor your spark jobs and Kafka topics

	6. Use Kibana to inspect events

	Capturing Network packets in Logisland
	1. Network Packets

	2. Tutorial environment

	3. Start LogIsland as a Docker container

	4. Parse Network Packets

	5. Stream network packets into the system

	6. Monitor your spark jobs and Kafka topics

	7. Use Kibana to inspect records

 Index Apache logs

Index Apache logs

In the following getting started tutorial we’ll drive you through the process of Apache log mining with LogIsland platform.

We will start a Docker container hosting all the LogIsland services, launch two streaming processes and send some apache logs
to the system in order to analyze them in a dashboard.

Note

You can download the latest release [https://github.com/Hurence/logisland/releases] of logisland and the YAML configuration file [https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-apache-logs.yml] for this tutorial which can be also found under $LOGISLAND_HOME/conf directory.

1. Start LogIsland as a Docker container

LogIsland is packaged as a Docker container that you can build yourself or pull from Docker Hub.
The docker container is built from a Centos 6.4 image with the following tools enabled

	Kafka

	Spark

	Elasticsearch

	Kibana

	Logstash

	Flume

	Nginx

	LogIsland

Pull the image from Docker Repository (it may take some time)

docker pull hurence/logisland

You should be aware that this Docker container is quite eager in RAM and will need at least 8G of memory to run smoothly.
Now run the container

run container
docker run \
 -it \
 -p 80:80 \
 -p 8080:8080 \
 -p 3000:3000 \
 -p 9200-9300:9200-9300 \
 -p 5601:5601 \
 -p 2181:2181 \
 -p 9092:9092 \
 -p 9000:9000 \
 -p 4050-4060:4050-4060 \
 --name logisland \
 -h sandbox \
 hurence/logisland bash

get container ip
docker inspect logisland

or if your are on mac os
docker-machine ip default

you should add an entry for sandbox (with the container ip) in your /etc/hosts as it will be easier to access to all web services in logisland running container.

Note

If you have your own Spark and Kafka cluster, you can download the latest release [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

2. Parse the logs records

For this tutorial we will handle some apache logs with a splitText parser and send them to Elastiscearch
Connect a shell to your logisland container to launch the following streaming jobs.

docker exec -ti logisland bash
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-apache-logs.yml

Setup Spark/Kafka streaming engine

An Engine is needed to handle the stream processing. This conf/index-apache-logs.yml configuration file defines a stream processing job setup.
The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) as well as an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

engine:
 component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
 type: engine
 documentation: Main Logisland job entry point
 configuration:
 spark.app.name: LogislandTutorial
 spark.master: local[4]
 spark.driver.memory: 1G
 spark.driver.cores: 1
 spark.executor.memory: 3G
 spark.executor.instances: 4
 spark.executor.cores: 2
 spark.yarn.queue: default
 spark.serializer: org.apache.spark.serializer.KryoSerializer
 spark.streaming.batchDuration: 4000
 spark.streaming.backpressure.enabled: false
 spark.streaming.unpersist: false
 spark.streaming.blockInterval: 500
 spark.streaming.kafka.maxRatePerPartition: 3000
 spark.streaming.timeout: -1
 spark.streaming.unpersist: false
 spark.streaming.kafka.maxRetries: 3
 spark.streaming.ui.retainedBatches: 200
 spark.streaming.receiver.writeAheadLog.enable: false
 spark.ui.port: 4050

 controllerServiceConfigurations:

 - controllerService: elasticsearch_service
 component: com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_ClientService
 type: service
 documentation: elasticsearch 2.4.0 service implementation
 configuration:
 hosts: sandbox:9300
 cluster.name: elasticsearch
 batch.size: 20000

 streamConfigurations:

Stream 1 : parse incoming apache log lines

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the logs sent in logisland_raw topic and push the processing output into logisland_events topic.

Note

We want to specify an Avro output schema to validate our ouput records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

parsing
- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that links
 configuration:
 kafka.input.topics: logisland_raw
 kafka.output.topics: logisland_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 avro.output.schema: >
 { "version":1,
 "type": "record",
 "name": "com.hurence.logisland.record.apache_log",
 "fields": [
 { "name": "record_errors", "type": [{"type": "array", "items": "string"},"null"] },
 { "name": "record_raw_key", "type": ["string","null"] },
 { "name": "record_raw_value", "type": ["string","null"] },
 { "name": "record_id", "type": ["string"] },
 { "name": "record_time", "type": ["long"] },
 { "name": "record_type", "type": ["string"] },
 { "name": "src_ip", "type": ["string","null"] },
 { "name": "http_method", "type": ["string","null"] },
 { "name": "bytes_out", "type": ["long","null"] },
 { "name": "http_query", "type": ["string","null"] },
 { "name": "http_version","type": ["string","null"] },
 { "name": "http_status", "type": ["string","null"] },
 { "name": "identd", "type": ["string","null"] },
 { "name": "user", "type": ["string","null"] }]}
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of fields.

parse apache logs
- processor: apache_parser
 component: com.hurence.logisland.processor.SplitText
 type: parser
 documentation: a parser that produce events from an apache log REGEX
 configuration:
 value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
 value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,http_status,bytes_out

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will
be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

Stream 2 :Index the processed records to Elasticsearch

The second Kafka stream will handle Records pushed into logisland_events topic to index them into elasticsearch

- stream: indexing_stream
 component: com.hurence.logisland.processor.chain.KafkaRecordStream
 type: processor
 documentation: a processor that pushes events to ES
 configuration:
 kafka.input.topics: logisland_events
 kafka.output.topics: none
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:

 # add to elasticsearch
 - processor: es_publisher
 component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
 type: processor
 documentation: a processor that trace the processed events
 configuration:
 elasticsearch.client.service: elasticsearch_service
 default.index: logisland
 default.type: event
 timebased.index: yesterday
 es.index.field: search_index
 es.type.field: record_type

3. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic
but there’s a super useful tool in the Kafka ecosystem : kafkacat [https://github.com/edenhill/kafkacat],
a generic command line non-JVM Apache Kafka producer and consumer which can be easily installed.

If you don’t have your own httpd logs available, you can use some freely available log files from
NASA-HTTP [http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html] web site access:

	Jul 01 to Jul 31, ASCII format, 20.7 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz]

	Aug 04 to Aug 31, ASCII format, 21.8 MB gzip compressed [ftp://ita.ee.lbl.gov/traces/NASA_access_logAug95.gz]

Let’s send the first 500000 lines of NASA http access over July 1995 to LogIsland with kafkacat to logisland_raw Kafka topic

docker exec -ti logisland bash
cd /tmp
wget ftp://ita.ee.lbl.gov/traces/NASA_access_log_Jul95.gz
gunzip NASA_access_log_Jul95.gz
head -500000 NASA_access_log_Jul95 | kafkacat -b sandbox:9092 -t logisland_raw

4. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process
your data

[image: ../_images/spark-job-monitoring.png]
Another tool can help you to tweak and monitor your processing http://sandbox:9000/

[image: ../_images/kafka-mgr.png]

5. Use Kibana to inspect the logs

Open up your browser and go to http://sandbox:5601/ [http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:‘1995-05-08T12:14:53.216Z’,mode:absolute,to:‘1995-11-25T05:30:52.010Z’))&_a=(columns:!(_source),filters:!(),index:’li-*’,interval:auto,query:(query_string:(analyze_wildcard:!t,query:usa)),sort:!(‘@timestamp’,desc),vis:(aggs:!((params:(field:host,orderBy:‘2’,size:20),schema:segment,type:terms),(id:‘2’,schema:metric,type:count)),type:histogram))&indexPattern=li-*&type=histogram] and you should be able to explore your apache logs.

Configure a new index pattern with logisland.* as the pattern name and @timestamp as the time value field.

[image: ../_images/kibana-configure-index.png]
Then if you go to Explore panel for the latest 15’ time window you’ll only see logisland process_metrics events which give you
insights about the processing bandwidth of your streams.

[image: ../_images/kibana-logisland-metrics.png]
As we explore data logs from july 1995 we’ll have to select an absolute time filter from 1995-06-30 to 1995-07-08 to see the events.

[image: ../_images/kibana-apache-logs.png]

 Index Apache logs Enrichment

Index Apache logs Enrichment

In the following tutorial we’ll drive you through the process of enriching Apache logs with LogIsland platform.

One of the first step when treating web access logs is to extract information from the User-Agent header string, in order to be able to classify traffic.
The User-Agent string is part of the access logs from the web server (this is the last field in the example below).

That string is packed with information from the visitor, when you know how to interpret it. However, the User-Agent string is not based on any standard, and it is not trivial to extract meaningful information from it.
LogIsland provides a processor, based on the YAUAA library [http://github.com/nielsbasjes/yauaa], that simplifies that treatement.

We will reuse the Docker container hosting all the LogIsland services from the previous tutorial, and add the User-Agent processor to the stream.

Note

You can download the latest release [https://github.com/Hurence/logisland/releases] of logisland and the YAML configuration file [https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/user-agent-logs.yml] for this tutorial which can be also found under $LOGISLAND_HOME/conf directory.

1. Start LogIsland as a Docker container

LogIsland is packaged as a Docker container that you can build yourself or pull from Docker Hub.

You can find the steps to start the Docker image and start the LogIsland server in the previous tutorial.
However, you’ll start the server with a different configuration file (that already includes the User-Agent processor)

Stream 1 : modify the stream to analyze the User-Agent string

Note

You can either apply the modifications from this section to the file conf/index-apache-logs.yml ot directly use the file conf/user-agent-logs.yml that already includes them.

The stream needs to be modified to

* modify the regex to add the referer and the User-Agent strings for the SplitText processor
* modify the Avro schema to include the new fields returned by the UserAgentProcessor
* include the the processing of the User-Agent string after the parsing of the logs

The example below shows how to include all of the fields supported by the processor.

Note

It is possible to remove unwanted fields from both the processor configuration and the Avro schema

parsing
- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that links
 configuration:
 kafka.input.topics: logisland_raw
 kafka.output.topics: logisland_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 avro.output.schema: >
 { "version":1,
 "type": "record",
 "name": "com.hurence.logisland.record.apache_log",
 "fields": [
 { "name": "record_errors", "type": [{"type": "array", "items": "string"},"null"] },
 { "name": "record_raw_key", "type": ["string","null"] },
 { "name": "record_raw_value", "type": ["string","null"] },
 { "name": "record_id", "type": ["string"] },
 { "name": "record_time", "type": ["long"] },
 { "name": "record_type", "type": ["string"] },
 { "name": "src_ip", "type": ["string","null"] },
 { "name": "http_method", "type": ["string","null"] },
 { "name": "bytes_out", "type": ["long","null"] },
 { "name": "http_query", "type": ["string","null"] },
 { "name": "http_version","type": ["string","null"] },
 { "name": "http_status", "type": ["string","null"] },
 { "name": "identd", "type": ["string","null"] },
 { "name": "user", "type": ["string","null"] } ,
 { "name": "http_user_agent", "type": ["string","null"] },
 { "name": "http_referer", "type": ["string","null"] },
 { "name": "DeviceClass", "type": ["string","null"] },
 { "name": "DeviceName", "type": ["string","null"] },
 { "name": "DeviceBrand", "type": ["string","null"] },
 { "name": "DeviceCpu", "type": ["string","null"] },
 { "name": "DeviceFirmwareVersion", "type": ["string","null"] },
 { "name": "DeviceVersion", "type": ["string","null"] },
 { "name": "OperatingSystemClass", "type": ["string","null"] },
 { "name": "OperatingSystemName", "type": ["string","null"] },
 { "name": "OperatingSystemVersion", "type": ["string","null"] },
 { "name": "OperatingSystemNameVersion", "type": ["string","null"] },
 { "name": "OperatingSystemVersionBuild", "type": ["string","null"] },
 { "name": "LayoutEngineClass", "type": ["string","null"] },
 { "name": "LayoutEngineName", "type": ["string","null"] },
 { "name": "LayoutEngineVersion", "type": ["string","null"] },
 { "name": "LayoutEngineVersionMajor", "type": ["string","null"] },
 { "name": "LayoutEngineNameVersion", "type": ["string","null"] },
 { "name": "LayoutEngineNameVersionMajor", "type": ["string","null"] },
 { "name": "LayoutEngineBuild", "type": ["string","null"] },
 { "name": "AgentClass", "type": ["string","null"] },
 { "name": "AgentName", "type": ["string","null"] },
 { "name": "AgentVersion", "type": ["string","null"] },
 { "name": "AgentVersionMajor", "type": ["string","null"] },
 { "name": "AgentNameVersion", "type": ["string","null"] },
 { "name": "AgentNameVersionMajor", "type": ["string","null"] },
 { "name": "AgentBuild", "type": ["string","null"] },
 { "name": "AgentLanguage", "type": ["string","null"] },
 { "name": "AgentLanguageCode", "type": ["string","null"] },
 { "name": "AgentInformationEmail", "type": ["string","null"] },
 { "name": "AgentInformationUrl", "type": ["string","null"] },
 { "name": "AgentSecurity", "type": ["string","null"] },
 { "name": "AgentUuid", "type": ["string","null"] },
 { "name": "FacebookCarrier", "type": ["string","null"] },
 { "name": "FacebookDeviceClass", "type": ["string","null"] },
 { "name": "FacebookDeviceName", "type": ["string","null"] },
 { "name": "FacebookDeviceVersion", "type": ["string","null"] },
 { "name": "FacebookFBOP", "type": ["string","null"] },
 { "name": "FacebookFBSS", "type": ["string","null"] },
 { "name": "FacebookOperatingSystemName", "type": ["string","null"] },
 { "name": "FacebookOperatingSystemVersion", "type": ["string","null"] },
 { "name": "Anonymized", "type": ["string","null"] },
 { "name": "HackerAttackVector", "type": ["string","null"] },
 { "name": "HackerToolkit", "type": ["string","null"] },
 { "name": "KoboAffiliate", "type": ["string","null"] },
 { "name": "KoboPlatformId", "type": ["string","null"] },
 { "name": "IECompatibilityVersion", "type": ["string","null"] },
 { "name": "IECompatibilityVersionMajor", "type": ["string","null"] },
 { "name": "IECompatibilityNameVersion", "type": ["string","null"] },
 { "name": "IECompatibilityNameVersionMajor", "type": ["string","null"] },
 { "name": "Carrier", "type": ["string","null"] },
 { "name": "GSAInstallationID", "type": ["string","null"] },
 { "name": "WebviewAppName", "type": ["string","null"] },
 { "name": "WebviewAppNameVersionMajor", "type": ["string","null"] },
 { "name": "WebviewAppVersion", "type": ["string","null"] },
 { "name": "WebviewAppVersionMajor", "type": ["string","null"]}]}
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:

 # parse apache logs
 - processor: apache_parser
 component: com.hurence.logisland.processor.SplitText
 type: parser
 documentation: a parser that produce events from an apache log REGEX
 configuration:
 record.type: apache_log
 # Previous regex
 #value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
 #value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,http_status,bytes_out
 # Updated regex
 value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)\s+"(\S+)"\s+"([^\"]+)"
 value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,http_status,bytes_out,http_referer,http_user_agent

 - processor: user_agent_analyzer
 component: com.hurence.logisland.processor.useragent.ParseUserAgent
 type: processor
 documentation: decompose the user_agent field into meaningful attributes
 configuration:
 useragent.field: http_user_agent
 fields: DeviceClass,DeviceName,DeviceBrand,DeviceCpu,DeviceFirmwareVersion,DeviceVersion,OperatingSystemClass,OperatingSystemName,OperatingSystemVersion,OperatingSystemNameVersion,OperatingSystemVersionBuild,LayoutEngineClass,LayoutEngineName,LayoutEngineVersion,LayoutEngineVersionMajor,LayoutEngineNameVersion,LayoutEngineNameVersionMajor,LayoutEngineBuild,AgentClass,AgentName,AgentVersion,AgentVersionMajor,AgentNameVersion,AgentNameVersionMajor,AgentBuild,AgentLanguage,AgentLanguageCode,AgentInformationEmail,AgentInformationUrl,AgentSecurity,AgentUuid,FacebookCarrier,FacebookDeviceClass,FacebookDeviceName,FacebookDeviceVersion,FacebookFBOP,FacebookFBSS,FacebookOperatingSystemName,FacebookOperatingSystemVersion,Anonymized,HackerAttackVector,HackerToolkit,KoboAffiliate,KoboPlatformId,IECompatibilityVersion,IECompatibilityVersionMajor,IECompatibilityNameVersion,IECompatibilityNameVersionMajor,GSAInstallationID,WebviewAppName,WebviewAppNameVersionMajor,WebviewAppVersion,WebviewAppVersionMajor

Once the configuration file is updated, LogIsland must be restarted with that new configuration file.

bin/logisland.sh --conf <new_configuration_file>

2. Inject some Apache logs into the system

Now we’re going to send some logs to logisland_raw Kafka topic.

We could setup a logstash or flume agent to load some apache logs into a kafka topic
but there’s a super useful tool in the Kafka ecosystem : kafkacat [https://github.com/edenhill/kafkacat],
a generic command line non-JVM Apache Kafka producer and consumer which can be easily installed (and is already present in the docker image).

If you don’t have your own httpd logs available, you can use some freely available log files from
Elastic [https://raw.githubusercontent.com/elastic/examples/master/ElasticStack_apache/apache_logs] web site

Let’s send the first 500000 lines of access log to LogIsland with kafkacat to logisland_raw Kafka topic

docker exec -ti logisland bash
cd /tmp
wget https://raw.githubusercontent.com/elastic/examples/master/ElasticStack_apache/apache_logs
head -500000 apache_logs | kafkacat -b sandbox:9092 -t logisland_raw

3. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process
your data

[image: ../_images/spark-job-monitoring.png]
Another tool can help you to tweak and monitor your processing http://sandbox:9000/

[image: ../_images/kafka-mgr.png]

4. Use Kibana to inspect the logs

You’ve completed the enrichment of your logs using the User-Agent processor.
The logs are now loaded into elasticSearch, in the following form :

curl -XGET http://localhost:9200/logisland.*/_search?pretty

{

 "_index": "logisland.2017.03.21",
 "_type": "apache_log",
 "_id": "4ca6a8b5-1a60-421e-9ae9-6c30330e497e",
 "_score": 1.0,
 "_source": {
 "@timestamp": "2015-05-17T10:05:43Z",
 "agentbuild": "Unknown",
 "agentclass": "Browser",
 "agentinformationemail": "Unknown",
 "agentinformationurl": "Unknown",
 "agentlanguage": "Unknown",
 "agentlanguagecode": "Unknown",
 "agentname": "Chrome",
 "agentnameversion": "Chrome 32.0.1700.77",
 "agentnameversionmajor": "Chrome 32",
 "agentsecurity": "Unknown",
 "agentuuid": "Unknown",
 "agentversion": "32.0.1700.77",
 "agentversionmajor": "32",
 "anonymized": "Unknown",
 "devicebrand": "Apple",
 "deviceclass": "Desktop",
 "devicecpu": "Intel",
 "devicefirmwareversion": "Unknown",
 "devicename": "Apple Macintosh",
 "deviceversion": "Unknown",
 "facebookcarrier": "Unknown",
 "facebookdeviceclass": "Unknown",
 "facebookdevicename": "Unknown",
 "facebookdeviceversion": "Unknown",
 "facebookfbop": "Unknown",
 "facebookfbss": "Unknown",
 "facebookoperatingsystemname": "Unknown",
 "facebookoperatingsystemversion": "Unknown",
 "gsainstallationid": "Unknown",
 "hackerattackvector": "Unknown",
 "hackertoolkit": "Unknown",
 "iecompatibilitynameversion": "Unknown",
 "iecompatibilitynameversionmajor": "Unknown",
 "iecompatibilityversion": "Unknown",
 "iecompatibilityversionmajor": "Unknown",
 "koboaffiliate": "Unknown",
 "koboplatformid": "Unknown",
 "layoutenginebuild": "Unknown",
 "layoutengineclass": "Browser",
 "layoutenginename": "Blink",
 "layoutenginenameversion": "Blink 32.0",
 "layoutenginenameversionmajor": "Blink 32",
 "layoutengineversion": "32.0",
 "layoutengineversionmajor": "32",
 "operatingsystemclass": "Desktop",
 "operatingsystemname": "Mac OS X",
 "operatingsystemnameversion": "Mac OS X 10.9.1",
 "operatingsystemversion": "10.9.1",
 "operatingsystemversionbuild": "Unknown",
 "webviewappname": "Unknown",
 "webviewappnameversionmajor": "Unknown",
 "webviewappversion": "Unknown",
 "webviewappversionmajor": "Unknown",
 "bytes_out": 171717,
 "http_method": "GET",
 "http_query": "/presentations/logstash-monitorama-2013/images/kibana-dashboard3.png",
 "http_referer": "http://semicomplete.com/presentations/logstash-monitorama-2013/",
 "http_status": "200",
 "http_user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36",
 "http_version": "HTTP/1.1",
 "identd": "-",
 "record_id": "4ca6a8b5-1a60-421e-9ae9-6c30330e497e",
 "record_raw_value": "83.149.9.216 - - [17/May/2015:10:05:43 +0000] \"GET /presentations/logstash-monitorama-2013/images/kibana-dashboard3.png HTTP/1.1\" 200 171717 \"http://semicomplete.com/presentations/logstash-monitorama-2013/\" \"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.77 Safari/537.36\"",
 "record_time": 1431857143000,
 "record_type": "apache_log",
 "src_ip": "83.149.9.216",
 "user": "-"
 }
}

You can now browse your data in Kibana and build great dashboards

 Alerts & Query Matching

Alerts & Query Matching

In the following tutorial we’ll learn how to generate time window metrics on some http traffic (apache log records) and
how to raise custom alerts based on lucene matching query criterion.

We assume that you already know how to parse and ingest Apache logs into logisland.
If it’s not the case please refer to the previous Apache logs indexing tutorial.
We will first add an SQLAggregator Stream
to compute some metrics and then add a MatchQuery Processor.

Note

You can download the latest release [https://github.com/Hurence/logisland/releases] of logisland and the YAML configuration file [https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/query-matching.yml] for this tutorial which can be also found under $LOGISLAND_HOME/conf directory.

1. Setup SQL Aggregation Stream

Our application will be composed of 2 streams, the first one use a KafkaRecordStreamSQLAggregator.
This stream defines input/output topics names as well as Serializers, avro schema.

Note

The Avro [http://avro.apache.org/docs/1.7.7/spec.html] schema is set for the input topic and must be same as the avro schema of the output topic for the stream that
produces the records (please refer to Index Apache logs tutorial

The most important part of the KafkaRecordStreamSQLAggregator is its sql.query property which defines
a query to apply on the incoming records for the given time window.

The following SQL query will be applied

SELECT count(*) AS connections_count, avg(bytes_out) AS avg_bytes_out, src_ip, first(record_time) as record_time
FROM logisland_events
GROUP BY src_ip
ORDER BY connections_count DESC
LIMIT 20

which will consider logisland_events topic as SQL table and create 20 output Record with the fields avg_bytes_out, src_ip & record_time.
the statement with record_time will ensure that the created Records will correspond to the effective input event time (not the actual time).

- stream: metrics_by_host
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamSQLAggregator
 type: stream
 documentation: a processor that links
 configuration:
 kafka.input.topics: logisland_events
 kafka.output.topics: logisland_aggregations
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 avro.input.schema: >
 { "version":1,
 "type": "record",
 "name": "com.hurence.logisland.record.apache_log",
 "fields": [
 { "name": "record_errors", "type": [{"type": "array", "items": "string"},"null"] },
 { "name": "record_raw_key", "type": ["string","null"] },
 { "name": "record_raw_value", "type": ["string","null"] },
 { "name": "record_id", "type": ["string"] },
 { "name": "record_time", "type": ["long"] },
 { "name": "record_type", "type": ["string"] },
 { "name": "src_ip", "type": ["string","null"] },
 { "name": "http_method", "type": ["string","null"] },
 { "name": "bytes_out", "type": ["long","null"] },
 { "name": "http_query", "type": ["string","null"] },
 { "name": "http_version","type": ["string","null"] },
 { "name": "http_status", "type": ["string","null"] },
 { "name": "identd", "type": ["string","null"] },
 { "name": "user", "type": ["string","null"] }]}
 sql.query: >
 SELECT count(*) AS connections_count, avg(bytes_out) AS avg_bytes_out, src_ip
 FROM logisland_events
 GROUP BY src_ip
 ORDER BY event_count DESC
 LIMIT 20
 max.results.count: 1000
 output.record.type: top_client_metrics

Here we will compute every x seconds, the top twenty src_ip for connections count.
The result of the query will be pushed into to logisland_aggregations topic as new top_client_metrics Record containing connections_count and avg_bytes_out fields.

2. Setup Query matching Stream on log Records

The second stream makes use of the KafkaRecordStreamParallelProcessing Stream with a
MatchQuery Processor. This processor provides user with dynamic query registration.
This queries are expressed in the Lucene syntax.

Note

Please read the Lucene syntax guide [https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description] for supported operations.

We’ll use 2 streams for query matching because we will handle 2 kind of Records.
The first one will send an alert when a particular host (src_ip:199.0.2.27) will make a connection
and anywhen someone from .edu domain makes a connection (src_ip:.edu).

match threshold queries
- stream: query_matching_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that match query in parrallel
 configuration:
 kafka.input.topics: logisland_events
 kafka.output.topics: logisland_alerts
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:
 - processor: match_query
 component: com.hurence.logisland.processor.MatchQuery
 type: processor
 documentation: a parser that produce events from an apache log REGEX
 configuration:
 blacklisted_host: src_ip:slip-5.io.com
 edu_host: src_ip:edu
 output.record.type: connection_alert

3. Setup Query matching Stream

The third one will match numeric fields on sql aggregates computed in the very first stream in this tutorial.

match threshold queries
- stream: query_matching_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that match query in parrallel
 configuration:
 kafka.input.topics: logisland_aggregations
 kafka.output.topics: logisland_alerts
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:
 - processor: match_query
 component: com.hurence.logisland.processor.MatchQuery
 type: processor
 documentation: a parser that produce events from an apache log REGEX
 configuration:
 numeric.fields: bytes_out,connections_count
 too_much_bandwidth: average_bytes:[100 TO 50000]
 too_many_connections: connections_count:[500 TO 1000000]
 output.record.type: threshold_alert

4. Start logisland application

Connect a shell to your logisland container to launch the following stream processing job previously defined.

docker exec -ti logisland bash

#launch logisland streams
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-apache-logs.yml
bin/logisland.sh --conf conf/query-matching.yml

send logs to kafka
head 500000 NASA_access_log_Jul95 | kafkacat -b sandbox:9092 -t logisland_raw

5. Check your alerts with Kibana

Open up your browser and go to http://sandbox:5601/ [http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:‘1995-05-08T12:14:53.216Z’,mode:absolute,to:‘1995-11-25T05:30:52.010Z’))&_a=(columns:!(_source),filters:!(),index:’li-*’,interval:auto,query:(query_string:(analyze_wildcard:!t,query:usa)),sort:!(‘@timestamp’,desc),vis:(aggs:!((params:(field:host,orderBy:‘2’,size:20),schema:segment,type:terms),(id:‘2’,schema:metric,type:count)),type:histogram))&indexPattern=li-*&type=histogram] and you should be able to explore your apache logs.

As we explore data logs from july 1995 we’ll have to select an absolute time filter from 1995-06-30 to 1995-07-08 to see the events.

[image: ../_images/kibana-apache-logs.png]
you can filter your events with record_type:connection_alert to get 71733 connections alerts matching your query

[image: ../_images/kibana-connection-alerts.png]
by adding another filter on alert_match_name:blacklisted_host you’ll only get request from slip-5.io.com which is a host we where monitoring.

[image: ../_images/kibana-blacklisted-host.png]
if we filter now on threshold alerts whith record_type:threshold_alert you’ll get the 13 src_ip that have been catched by the threshold query.

[image: ../_images/kibana-threshold-alerts.png]

 Time series sampling & Outliers detection

Time series sampling & Outliers detection

In the following tutorial we’ll handle time series data from a sensor. We’ll see how sample the datapoints in a visually
non destructive way and

We assume that you are already familiar with logisland platform and that you have successfully done the previous tutorials.

Note

You can download the latest release [https://github.com/Hurence/logisland/releases] of logisland and the YAML configuration file [https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/outlier-detection.yml] for this tutorial which can be also found under $LOGISLAND_HOME/conf directory.

1. Setup the time series collection Stream

The first Stream use a KafkaRecordStreamParallelProcessing
and chain of a SplitText

The first Processor simply parse the csv lines while the second index them into the search engine.
Please note the output schema.

parsing time series
- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that links
 configuration:
 kafka.input.topics: logisland_ts_raw
 kafka.output.topics: logisland_ts_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 avro.output.schema: >
 { "version":1,
 "type": "record",
 "name": "com.hurence.logisland.record.cpu_usage",
 "fields": [
 { "name": "record_errors", "type": [{"type": "array", "items": "string"},"null"] },
 { "name": "record_raw_key", "type": ["string","null"] },
 { "name": "record_raw_value", "type": ["string","null"] },
 { "name": "record_id", "type": ["string"] },
 { "name": "record_time", "type": ["long"] },
 { "name": "record_type", "type": ["string"] },
 { "name": "record_value", "type": ["string","null"] }]}
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:
 - processor: apache_parser
 component: com.hurence.logisland.processor.SplitText
 type: parser
 documentation: a parser that produce events from an apache log REGEX
 configuration:
 record.type: apache_log
 value.regex: (\S+),(\S+)
 value.fields: record_time,record_value

2. Setup the Outliers detection Stream

The first Stream use a KafkaRecordStreamParallelProcessing
and a DetectOutliers Processor

Note

It’s important to see that we perform outliers detection in parallel.
So if we would perform this detection for a particular grouping of record we would have used
a KafkaRecordStreamSQLAggregator with a GROUP BY clause instead.

detect outliers
- stream: detect_outliers
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that match query in parrallel
 configuration:
 kafka.input.topics: logisland_sensor_events
 kafka.output.topics: logisland_sensor_outliers_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:
 - processor: match_query
 component: com.hurence.logisland.processor.DetectOutliers
 type: processor
 documentation: a processor that detection something exotic in a continuous time series values
 configuration:
 rotation.policy.type: by_amount
 rotation.policy.amount: 100
 rotation.policy.unit: points
 chunking.policy.type: by_amount
 chunking.policy.amount: 10
 chunking.policy.unit: points
 global.statistics.min: -100000
 min.amount.to.predict: 100
 zscore.cutoffs.normal: 3.5
 zscore.cutoffs.moderate: 5
 record.value.field: record_value
 record.time.field: record_time
 output.record.type: sensor_outlier

3. Setup the time series Sampling Stream

The first Stream use a KafkaRecordStreamParallelProcessing
and a RecordSampler Processor

sample time series
- stream: detect_outliers
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that match query in parrallel
 configuration:
 kafka.input.topics: logisland_sensor_events
 kafka.output.topics: logisland_sensor_sampled_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:
 - processor: sampler
 component: com.hurence.logisland.processor.SampleRecords
 type: processor
 documentation: a processor that reduce the number of time series values
 configuration:
 record.value.field: record_value
 record.time.field: record_time
 sampling.algorithm: average
 sampling.parameter: 10

4. Setup the indexing Stream

The last Stream use a KafkaRecordStreamParallelProcessing
and chain of a SplitText and a BulkAddElasticsearch
for indexing the whole records

index records
- stream: indexing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that links
 configuration:
 kafka.input.topics: logisland_sensor_events,logisland_sensor_outliers_events,logisland_sensor_sampled_events
 kafka.output.topics: none
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: none
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:
 - processor: es_publisher
 component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
 type: processor
 documentation: a processor that trace the processed events
 configuration:
 elasticsearch.client.service: elasticsearch_service
 default.index: logisland
 default.type: event
 timebased.index: yesterday
 es.index.field: search_index
 es.type.field: record_type

4. Start logisland application

Connect a shell to your logisland container to launch the following stream processing job previously defined.

docker exec -ti logisland bash

#launch logisland streams
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/outlier-detection.yml

send logs to kafka
cat cpu_utilization_asg_misconfiguration.csv | kafkacat -b sandbox:9092 -P -t logisland_sensor_raw

5. Check your alerts with Kibana

 Bro/Logisland integration - Indexing Bro events

Bro/Logisland integration - Indexing Bro events

Bro and Logisland

Bro [https://www.bro.org] is a Network IDS
(Intrusion Detection System [https://en.wikipedia.org/wiki/Intrusion_detection_system]) that
can be deployed to monitor your infrastructure. Bro listens to the packets of your network
and generates high level events from them. It can for instance generate an event each time there is a
connection, a file transfer, a DNS query...anything that can be deduced from packet analysis.

Through its out-of-the-box ParseBroEvent processor, Logisland integrates with Bro and is able to receive and handle Bro events and notices coming from Bro.
By analyzing those events with Logisland, you may do some correlations and for instance generate some higher level alarms or do whatever
you want, in a scalable manner, like monitoring a huge infrastructure with hundreds of machines.

Bro comes with a scripting language that allows to also generate some higher level events from other events correlations.
Bro calls such events ‘notices’. For instance a notice can be generated when a user or bot tries to guess a password with brute forcing.
Logisland is also able to receive and handle those notices.

For the purpose of this tutorial, we will show you how to receive Bro events and notices in Logisland and how to index them in
ElasticSearch for network audit purpose. But you can imagine to plug any Logisland processors after the ParseBroEvent processor to build
your own monitoring system or any other application based on Bro events and notices handling.

Tutorial environment

This tutorial will give you a better understanding of how Bro and Logisland integrate together.

We will start two Docker containers:

	1 container hosting all the LogIsland services

	1 container hosting Bro pre-loaded with Bro-Kafka plugin

We will launch two streaming processes and configure Bro to send events and notices to the Logisland system so that they
are indexed in ElasticSearch.

It is important to understand that in a production environment Bro would be installed on machines where he is relevant for
your infrastructure and will be configured to remotely point to the Logisland service (Kafka). But for easiness of this tutorial, we
provide you with an easy mean of generating Bro events through our Bro Docker image.

This tutorial will guide you through the process of configuring Logisland for treating Bro events, and configuring Bro of the
second container to send the events and notices to the Logisland service in the first container.

Note

You can download the latest release [https://github.com/Hurence/logisland/releases] of Logisland and the YAML configuration file [https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-bro-events.yml]
for this tutorial which can be also found under $LOGISLAND_HOME/conf directory in the Logsiland container.

1. Start the Docker container with LogIsland

LogIsland is packaged as a Docker image that you can build yourself [https://github.com/Hurence/logisland/tree/master/logisland-docker#build-your-own] or pull from Docker Hub.
The docker image is built from a CentOs image with the following components already installed (among some others not useful for this tutorial):

	Kafka

	Spark

	Elasticsearch

	LogIsland

Pull the image from Docker Repository (it may take some time)

docker pull hurence/logisland

You should be aware that this Docker container is quite eager in RAM and will need at least 8G of memory to run smoothly.
Now run the container

run container
docker run \
 -it \
 -p 80:80 \
 -p 8080:8080 \
 -p 3000:3000 \
 -p 9200-9300:9200-9300 \
 -p 5601:5601 \
 -p 2181:2181 \
 -p 9092:9092 \
 -p 9000:9000 \
 -p 4050-4060:4050-4060 \
 --name logisland \
 -h sandbox \
 hurence/logisland bash

get container ip
docker inspect logisland | grep IPAddress

or if your are on mac os
docker-machine ip default

You should add an entry for sandbox (with the container ip) in your /etc/hosts as it will be easier to access to all web services in Logisland running container.
Or you can use ‘localhost’ instead of ‘sandbox’ where applicable.

Note

If you have your own Spark and Kafka cluster, you can download the latest release [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

2. Transform Bro events into Logisland records

For this tutorial we will receive Bro events and notices and send them to Elastiscearch. The configuration file for this tutorial is
already present in the container at $LOGISLAND_HOME/conf/index-bro-events.yml and its content can be viewed
here [https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-bro-events.yml]
. Within the following steps, we will go through this configuration file and detail the sections and what they do.

Connect a shell to your Logisland container to launch a Logisland instance with the following streaming jobs:

docker exec -ti logisland bash
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-bro-events.yml

Note

Logisland is now started. If you want to go straight forward and do not care for the moment about the configuration file details, you can now skip the
following sections and directly go to the 3. Start the Docker container with Bro section.

Setup Spark/Kafka streaming engine

An Engine is needed to handle the stream processing. The conf/index-bro-events.yml configuration file defines a stream processing job setup.
The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) as well as an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

engine:
 component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
 type: engine
 documentation: Index Bro events with LogIsland
 configuration:
 spark.app.name: IndexBroEventsDemo
 spark.master: local[4]
 spark.driver.memory: 1G
 spark.driver.cores: 1
 spark.executor.memory: 2G
 spark.executor.instances: 4
 spark.executor.cores: 2
 spark.yarn.queue: default
 spark.yarn.maxAppAttempts: 4
 spark.yarn.am.attemptFailuresValidityInterval: 1h
 spark.yarn.max.executor.failures: 20
 spark.yarn.executor.failuresValidityInterval: 1h
 spark.task.maxFailures: 8
 spark.serializer: org.apache.spark.serializer.KryoSerializer
 spark.streaming.batchDuration: 4000
 spark.streaming.backpressure.enabled: false
 spark.streaming.unpersist: false
 spark.streaming.blockInterval: 500
 spark.streaming.kafka.maxRatePerPartition: 3000
 spark.streaming.timeout: -1
 spark.streaming.unpersist: false
 spark.streaming.kafka.maxRetries: 3
 spark.streaming.ui.retainedBatches: 200
 spark.streaming.receiver.writeAheadLog.enable: false
 spark.ui.port: 4050

 controllerServiceConfigurations:

 - controllerService: elasticsearch_service
 component: com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_ClientService
 type: service
 documentation: elasticsearch 2.4.0 service implementation
 configuration:
 hosts: sandbox:9300
 cluster.name: elasticsearch
 batch.size: 20000

 streamConfigurations:

Stream 1: Parse incoming Bro events

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the Bro events and notices sent in the bro topic and push the processing output into the logisland_events topic.

Parsing
- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: A processor chain that transforms Bro events into Logisland records
 configuration:
 kafka.input.topics: bro
 kafka.output.topics: logisland_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:

Within this stream there is a single processor in the processor chain: the Bro processor. It takes an incoming Bro event/notice JSON document and computes a Logisland Record as a sequence of fields
that were contained in the JSON document.

Transform Bro events into Logisland records
- processor: Bro adaptor
 component: com.hurence.logisland.processor.bro.ParseBroEvent
 type: parser
 documentation: A processor that transforms Bro events into LogIsland events

This stream will process Bro events as soon as they will be queued into the bro Kafka topic. Each log will
be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

Stream 2: Index the processed records into Elasticsearch

The second Kafka stream will handle Records pushed into the logisland_events topic to index them into ElasticSearch.
So there is no need to define an output topic. The input topic is enough:

Indexing
- stream: indexing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: processor
 documentation: A processor chain that pushes bro events to ES
 configuration:
 kafka.input.topics: logisland_events
 kafka.output.topics: none
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: none
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:

The only processor in the processor chain of this stream is the BulkAddElasticsearch processor.

Bulk add into ElasticSearch
- processor: ES Publisher
 component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
 type: processor
 documentation: A processor that pushes Bro events into ES
 configuration:
 elasticsearch.client.service: elasticsearch_service
 default.index: bro
 default.type: events
 timebased.index: today
 es.index.field: search_index
 es.type.field: record_type

The default.index: bro configuration parameter tells the processor to index events into an index starting with the bro string.
The timebased.index: today configuration parameter tells the processor to use the current date after the index prefix. Thus the index name
is of the form /bro.2017.02.23.

Finally, the es.type.field: record_type configuration parameter tells the processor to use the
record field record_type of the incoming record to determine the ElasticSearch type to use within the index.

We will come back to these settings and what they do in the section where we see examples of events to illustrate the workflow.

3. Start the Docker container with Bro

For this tutorial, we provide Bro as a Docker image that you can build yourself [https://github.com/Hurence/logisland/tree/master/logisland-docker/bro] or pull from Docker Hub.
The docker image is built from an Ubuntu image with the following components already installed:

	Bro

	Bro-Kafka plugin

Note

Due to the fact that Bro requires a Kafka plugin to be able to send events to Kafka and that building the Bro-Kafka plugin requires
some substantial steps (need Bro sources), for this tutorial, we are only focusing on configuring Bro, and consider it already compiled and installed
with its Bro-Kafka plugin (this is the case in our Bro docker image). But looking at the Dockerfile we made to build the Bro Docker
image and which is located here [https://github.com/Hurence/logisland/tree/master/logisland-docker/bro/Dockerfile],
you will have an idea on how to install Bro and Bro-Kafka plugin binaries on your own systems.

Pull the Bro image from Docker Repository:

Warning

If the Bro image is not yet available in the Docker Hub: please build our Bro Docker image yourself as described in the link above for the moment.

docker pull hurence/bro

Start a Bro container from the Bro image:

run container
docker run -it --name bro -h bro hurence/bro

get container ip
docker inspect bro | grep IPAddress

or if your are on mac os
docker-machine ip default

4. Configure Bro to send events to Kafka

In the following steps, if you want a new shell to your running bro container, do as necessary:

docker exec -ti bro bash

Make the sandbox hostname reachable

Kafka in the Logisland container broadcasts his hostname which we have set up being sandbox. For this hostname to be reachable from the Bro container, we must declare the IP address of the Logisland container. In the Bro container, edit the /etc/hosts file and add the following line at the end of the file, using the right IP address:

172.17.0.2 sandbox

Note

Be sure to use the IP address of your Logisland container.

Note

Any potential communication problem of the Bro-Kafka plugin will be displayed in the /usr/local/bro/spool/bro/stderr.log log file. Also, you should not need this, but the advertised name used by Kafka is declared in the /usr/local/kafka/config/server.properties file (in the Logisland container), in the advertised.host.name property. Any modification to this property requires a Kafka server restart.

Edit the Bro config file

We will configure Bro so that it loads the Bro-Kafka plugin at startup. We will also point to Kafka of the Logisland container
and define the event types we want to push to Logisland.

Edit the config file of bro:

vi $BRO_HOME/share/bro/site/local.bro

At the beginning of the file, add the following section (take care to respect
indentation):

@load Bro/Kafka/logs-to-kafka.bro
 redef Kafka::kafka_conf = table(
 ["metadata.broker.list"] = "sandbox:9092",
 ["client.id"] = "bro"
);
 redef Kafka::topic_name = "bro";
 redef Kafka::logs_to_send = set(Conn::LOG, DNS::LOG, SSH::LOG, Notice::LOG);
 redef Kafka::tag_json = T;

Let’s detail a bit what we did:

This line tells Bro to load the Bro-Kafka plugin at startup (the next lines are configuration for the Bro-Kafka plugin):

@load Bro/Kafka/logs-to-kafka.bro

These lines make the Bro-Kafka plugin point to the Kafka instance in the Logisland
container (host, port, client id to use). These are communication settings:

redef Kafka::kafka_conf = table(
 ["metadata.broker.list"] = "sandbox:9092",
 ["client.id"] = "bro"
);

This line tells the Kafka topic name to use. It is important that it is the same as the
input topic of the ParseBroEvent processor in Logisland:

redef Kafka::topic_name = "bro";

This line tells the Bro-Kafka plugin what type of events should be intercepted and sent to Kafka. For this tutorial we
send Connections, DNS and SSH events. We are also interested in any notice (alert) that Bro can generate.
For a complete list of possibilities, see the Bro documentation for events [https://www.bro.org/sphinx/script-reference/log-files.html]
and notices [https://www.bro.org/sphinx/bro-noticeindex.html]:

redef Kafka::logs_to_send = set(Conn::LOG, DNS::LOG, SSH::LOG, Notice::LOG);

This line tells the Bro-Kafka plugin to add the event type in the Bro JSON document it sends.
This is required and expected by the Bro Processor as it uses this field to tag the record with his type.
This also tells Logisland which ElasticSearch index type to use for storing the event:

redef Kafka::tag_json = T;

Start Bro

To start bro, we use the broctl command that is already in the path of the container.
It starts an interactive session to control bro:

broctl

Then start the bro service: use the deploy command in broctl session:

Welcome to BroControl 1.5-9

Type "help" for help.

[BroControl] > deploy
checking configurations ...
installing ...
removing old policies in /usr/local/bro/spool/installed-scripts-do-not-touch/site ...
removing old policies in /usr/local/bro/spool/installed-scripts-do-not-touch/auto ...
creating policy directories ...
installing site policies ...
generating standalone-layout.bro ...
generating local-networks.bro ...
generating broctl-config.bro ...
generating broctl-config.sh ...
stopping ...
bro not running
starting ...
starting bro ...

Note

The deploy command is a shortcut to the check, install and restart commands.
Everytime you modify the $BRO_HOME/share/bro/site/local.bro configuration file, you must re-issue a deploy command so that
changes are taken into account.

5. Generate some Bro events and notices

Now that everything is in place you can generate some network activity in the Bro container to generate some events and see them indexed in ElasticSearch.

Monitor Kafka topic

We will generate some events but first we want to see them in Kafka to be sure Bro has forwarded them to Kafka.
Connect to the Logisland container:

docker exec -ti logisland bash

Then use the kafkacat command to listen to messages incoming in the bro topic:

kafkacat -b localhost:9092 -t bro -o end

Let the command run. From now on, any incoming event from Bro and entering Kafka will be also displayed in this shell.

Issue a DNS query

Open a shell to the Bro container:

docker exec -ti bro bash

Then use the ping command to trigger an underlying DNS query:

ping www.wikipedia.org

You should see in the listening kafkacat shell an incoming JSON Bro event of type dns.

Here is a pretty print version of this event. It should look like this one:

{
 "dns": {
 "AA": false,
 "TTLs": [599],
 "id.resp_p": 53,
 "rejected": false,
 "query": "www.wikipedia.org",
 "answers": ["91.198.174.192"],
 "trans_id": 56307,
 "rcode": 0,
 "id.orig_p": 60606,
 "rcode_name": "NOERROR",
 "TC": false,
 "RA": true,
 "uid": "CJkHd3UABb4W7mx8b",
 "RD": false,
 "id.orig_h": "172.17.0.2",
 "proto": "udp",
 "id.resp_h": "8.8.8.8",
 "Z": 0,
 "ts": 1487785523.12837
 }
}

The Bro Processor should have processed this event which should have been handled next by the BulkAddElasticsearch processor and
finally the event should have been stored in ElasticSearch in the Logisland container.

To see this stored event, we will query ElasticSearch with the curl command. Let’s browse the dns type in any index starting with bro:

curl http://sandbox:9200/bro*/dns/_search?pretty

Note

Do not forget to change sandbox with the IP address of the Logisland container if needed.

You should be able to localize in the response from ElasticSearch a DNS event which looks like:

{
 "_index" : "bro.2017.02.23",
 "_type" : "dns",
 "_id" : "6aecfa3a-6a9e-4911-a869-b4e4599a69c1",
 "_score" : 1.0,
 "_source" : {
 "@timestamp": "2017-02-23T17:45:36Z",
 "AA": false,
 "RA": true,
 "RD": false,
 "TC": false,
 "TTLs": [599],
 "Z": 0,
 "answers": ["91.198.174.192"],
 "id_orig_h": "172.17.0.2",
 "id_orig_p": 60606,
 "id_resp_h": "8.8.8.8",
 "id_resp_p": 53,
 "proto": "udp",
 "query": "www.wikipedia.org",
 "rcode": 0,
 "rcode_name": "NOERROR",
 "record_id": "1947d1de-a65e-42aa-982f-33e9c66bfe26",
 "record_time": 1487785536027,
 "record_type": "dns",
 "rejected": false,
 "trans_id": 56307,
 "ts": 1487785523.12837,
 "uid": "CJkHd3UABb4W7mx8b"
 }
}

You should see that this JSON document is stored in a indexed of the form /bro.XXXX.XX.XX/dns:

"_index" : "bro.2017.02.23",
"_type" : "dns",

Here, as the Bro event is of type dns, the event has been indexed using the dns ES
type in the index. This allows to easily search only among events of a particular
type.

The ParseBroEvent processor has used the first level field dns of the incoming JSON event from Bro to add
a record_type field to the record he has created. This field has been used by the BulkAddElasticsearch processor
to determine the index type to use for storing the record.

The @timestamp field is added by the BulkAddElasticsearch processor before pushing the record into ES. Its value is
derived from the record_time field which has been added with also the record_id field by Logisland
when the event entered Logisland. The ts field is the Bro timestamp which is the time when the event
was generated in the Bro system.

Other second level fields of the incoming JSON event from Bro have been set as first level fields in the record
created by the Bro Processor. Also any field that had a ”.” chacracter has been transformed to use a “_” character.
For instance the id.orig_h field has been renamed into id_orig_h.

That is basically all the job the Bro Processor does. It’s a small adaptation layer for Bro events. Now if you look in the
Bro documentation and know the Bro event format, you can be able to know the format of a matching record going out of
the ParseBroEvent processor. You should then be able to write some Logsisland processors to handle any record going out of the Bro Processor.

Issue a Bro Notice

As a Bro notice is the result of analysis of many events, generating a real notice event with Bro is a bit more complicated if
you want to generate it with real traffic. Fortunately, Bro has the ability to generate events also from pcap files.
These are “packect capture” files. They hold the recording of a real network traffic. Bro analyzes the packets in those
files and generate events as if he was listening to real traffic.

In the Bro container, we have preloaded some pcap files in the $PCAP_HOME directory. Go into this directory:

cd $PCAP_HOME

The ssh.pcap file in this directory is a capture of a network traffic in which there is some SSH traffic with an
attempt to guess a user password. The analysis of such traffic generates a Bro SSH::Password_Guessing notice.

Let’s launch the following command to make Bro analyze the packets in the ssh.pcap file and generate this notice:

bro -r ssh.pcap local

In your previous kafkacat shell, you should see some ssh events that represent the SSH traffic. You should also see
a notice event like this one:

{
 "notice": {
 "ts":1320435875.879278,
 "note":"SSH::Password_Guessing",
 "msg":"172.16.238.1 appears to be guessing SSH passwords (seen in 30 connections).",
 "sub":"Sampled servers: 172.16.238.136, 172.16.238.136, 172.16.238.136, 172.16.238.136, 172.16.238.136",
 "src":"172.16.238.1",
 "peer_descr":"bro",
 "actions":["Notice::ACTION_LOG"],
 "suppress_for":3600.0,
 "dropped":false
 }
}

Then, like for the DNS event, it should also have been indexed in the notice index type in ElastiSearch. Browse documents in this
type like this:

curl http://sandbox:9200/bro*/notice/_search?pretty

Note

Do not forget to change sandbox with the IP address of the Logisland container if needed.

In the response, you should see a notice event like this:

{
 "_index" : "bro.2017.02.23",
 "_type" : "notice",
 "_id" : "76ab556b-167d-4594-8ee8-b05594cab8fc",
 "_score" : 1.0,
 "_source" : {
 "@timestamp" : "2017-02-23T10:45:08Z",
 "actions" : ["Notice::ACTION_LOG"],
 "dropped" : false,
 "msg" : "172.16.238.1 appears to be guessing SSH passwords (seen in 30 connections).",
 "note" : "SSH::Password_Guessing",
 "peer_descr" : "bro",
 "record_id" : "76ab556b-167d-4594-8ee8-b05594cab8fc",
 "record_time" : 1487933108041,
 "record_type" : "notice",
 "src" : "172.16.238.1",
 "sub" : "Sampled servers: 172.16.238.136, 172.16.238.136, 172.16.238.136, 172.16.238.136, 172.16.238.136",
 "suppress_for" : 3600.0,
 "ts" : 1.320435875879278E9
 }
 }

We are done with this first approach of Bro integration with LogIsland.

As we configured Bro to also send SSH and Connection events to Kafka, you can have a look at the matching
generated events in ES by browsing the ssh and conn index types:

Browse SSH events
curl http://sandbox:9200/bro*/ssh/_search?pretty
Browse Connection events
curl http://sandbox:9200/bro*/conn/_search?pretty

If you wish, you can also add some additional event types to be sent to Kafka in the Bro config
file and browse the matching indexed events in ES using the same kind of curl commands just by changing
the type in the query (do not forget to re-deploy Bro after configuration file modifications).

 Netflow/Logisland integration - Handling Netflow traffic

Netflow/Logisland integration - Handling Netflow traffic

Netflow and Logisland

Netflow [http://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/netflow/nfwhite.html] is a feature introduced
on Cisco routers that provides the ability to collect IP network traffic. We can distinguish 2 components:

	Flow exporter: aggregates packets into flows and exports flow records (binary format) towards flow collectors

	Flow collector: responsible for reception, storage and pre-processing of flow data received from a flow exporter

The collected data are therefore available for analysis purpose (intrusion detection, traffic analysis...)

Network Flows:
A network flow can be defined in many ways. Cisco standard NetFlow version 5 defines a flow as a unidirectional sequence of packets that all share the following 7 values:

	Ingress interface (SNMP ifIndex)

	Source IP address

	Destination IP address

	IP protocol

	Source port for UDP or TCP, 0 for other protocols

	Destination port for UDP or TCP, type and code for ICMP, or 0 for other protocols

	IP Type of Service

NetFlow Record

A NetFlow record can contain a wide variety of information about the traffic in a given flow. NetFlow version 5 (one of the most commonly used versions, followed by version 9) contains the following:

	Input interface index used by SNMP (ifIndex in IF-MIB).

	Output interface index or zero if the packet is dropped.

	Timestamps for the flow start and finish time, in milliseconds since the last boot.

	Number of bytes and packets observed in the flow

	Layer 3 headers:
	Source & destination IP addresses

	ICMP Type and Code.

	IP protocol

	Type of Service (ToS) value

	Source and destination port numbers for TCP, UDP, SCTP

	For TCP flows, the union of all TCP flags observed over the life of the flow.

	Layer 3 Routing information:
	IP address of the immediate next-hop (not the BGP nexthop) along the route to the destination

	Source & destination IP masks (prefix lengths in the CIDR notation)

Through its out-of-the-box Netflow processor, Logisland integrates with Netflow (V5) and is able to receive and handle Netflow events coming from a netflow collector.
By analyzing those events with Logisland, you may do some analysis for example for intrusion detection or traffic analysis.

In this tutorial, we will show you how to generate some Netflow traffic in LogIsland and how to index them in
ElasticSearch and vizualize them in Kinbana. More complexe treatment could bv done by plugging any Logisland processors after the Netflow processor.

Tutorial environment

This tutorial aims to show how to handle Netflow traffic within LogIsland.

For the purpose of this tutorial, we will generate Netflow traffic using nfgen [https://github.com/pazdera/NetFlow-Exporter-Simulator]. This tool will simulate a netflow traffic and send binary netflow records on port 2055 of sandbox. A nifi instance running on sandbox will listen on that port for incoming traffic and push the binary events to a kafka broker.

We will launch two streaming processes, one for generating the corresponding Netflow LogIsland records and the second one to index them in ElasticSearch.

Note

It is important to understand that in real environment Netflow traffic will be triggered by network devices (router, switches,...), so you will have to get the netflow traffic from the defined collectors, and send the corresponding record (formatted in JSON format as described before) to the Logisland service (Kafka).

Note

You can download the latest release [https://github.com/Hurence/logisland/releases] of Logisland and the YAML configuration file [https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-netflow-events.yml] for this tutorial which can also be found under $LOGISLAND_HOME/conf directory in the LogIsland container.

1. Start LogIsland as a Docker container

LogIsland is packaged as a Docker container that you can build yourself or pull from Docker Hub.
The docker container is built from a Centos 6.4 image with the following tools enabled (among others)

	Kafka

	Spark

	Elasticsearch

	Kibana

	LogIsland

Pull the image from Docker Repository (it may take some time)

docker pull hurence/logisland

You should be aware that this Docker container is quite eager in RAM and will need at least 8G of memory to run smoothly.
Now run the container

run container
docker run \
 -it \
 -p 80:80 \
 -p 8080:8080 \
 -p 2055:2055 \
 -p 3000:3000 \
 -p 9200-9300:9200-9300 \
 -p 5601:5601 \
 -p 2181:2181 \
 -p 9092:9092 \
 -p 9000:9000 \
 -p 4050-4060:4050-4060 \
 --name logisland \
 -h sandbox \
 hurence/logisland bash

get container ip
docker inspect logisland

or if your are on mac os
docker-machine ip default

you should add an entry for sandbox (with the container ip) in your /etc/hosts as it will be easier to access to all web services in logisland running container.

Note

If you have your own Spark and Kafka cluster, you can download the latest release [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

2. Configuration steps

First we have to peform some configuration steps on sandbox (to configure and start elasticsearch and nifi). We will create a dynamic template in ElasticSearch (to better handle the field mapping) using the following command:

docker exec -ti logisland bash

[root@sandbox /]# curl -XPUT localhost:9200/_template/netflow -d '{
 "template" : "netflow.*",
 "settings": {
 "index.refresh_interval": "5s"
 },
 "mappings" : {
 "netflowevent" : {
 "numeric_detection": true,
 "_all" : {"enabled" : false},
 "properties" : {
 "dOctets": {"index": "analyzed", "type": "long" },
 "dPkts": { "index": "analyzed", "type": "long" },
 "dst_as": { "index": "analyzed", "type": "long" },
 "dst_mask": { "index": "analyzed", "type": "long" },
 "dst_ip4": { "index": "analyzed", "type": "ip" },
 "dst_port": { "index": "analyzed", "type": "long" },
 "first":{"index": "analyzed", "type": "long" },
 "input":{"index": "analyzed", "type": "long" },
 "last":{"index": "analyzed", "type": "long" },
 "nexthop":{"index": "analyzed", "type": "ip" },
 "output":{"index": "analyzed", "type": "long" },
 "nprot":{"index": "analyzed", "type": "long" },
 "record_time":{"index": "analyzed", "type": "date","format": "strict_date_optional_time||epoch_millis" },
 "src_as":{"index": "analyzed", "type": "long" },
 "src_mask":{"index": "analyzed", "type": "long" },
 "src_ip4": { "index": "analyzed", "type": "ip" },
 "src_port":{"index": "analyzed", "type": "long" },
 "flags":{"index": "analyzed", "type": "long" },
 "tos":{"index": "analyzed", "type": "long" },
 "unix_nsecs":{"index": "analyzed", "type": "long" },
 "unix_secs":{"index": "analyzed", "type": "date","format": "strict_date_optional_time||epoch_second" }
 }
 }
 }
}'

In order to send netflow V5 event (binary format) to logisland_raw Kafka topic, we will use a nifi instance which will simply listen for netflow traffic on a UDP port (we keep here the default netflow port 2055) and push these netflow records to a kafka broker (sandbox:9092 with topic netflow).

	Start nifi

docker exec -ti logisland bash
cd /usr/local/nifi-1.1.1
bin/nifi.sh start

browse http://sandbox:8080/nifi/

	Import flow template

Download this [https://github.com/Hurence/logisland/tree/master/logisland-documentation/_static/nifi_netflow.xml] nifi template and import it using “Upload Template” in “Operator” toolbox.

[image: ../_images/nifi-template-dialog.png]

	Use this template to create the nifi flow

Drag the nifi toolbar template icon in the nifi work area and choose “nifi_netflow” template, the press “ADD” button

[image: ../_images/nifi-drag-template.png]
You finally have the following nifi flow

[image: ../_images/nifi-flow.png]

	start nifi processors

Select listenUDP processor of nifi flow, right click on it and press “Start”. Do the same for putKafka processor.

Note

the PutFile processor is only for debugging purpose. It dumps netflow records to /tmp/netflow directory (that should be previously created). So you normally don’t have to start it for that demo.

3. Parse Netflow records

For this tutorial we will handle netflow binary events, generate corresponding logisland records and store them to Elastiscearch

Connect a shell to your logisland container to launch the following streaming jobs.

docker exec -ti logisland bash
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-netflow-events.yml

Setup Spark/Kafka streaming engine

An Engine is needed to handle the stream processing. This conf/index-netflow-events.yml configuration file defines a stream processing job setup.
The first section configures the Spark engine (we will use a KafkaStreamProcessingEngine) as well as an Elasticsearch service that will be used later in the BulkAddElasticsearch processor.

engine:
 component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
 type: engine
 documentation: Index Netflow events with LogIsland
 configuration:
 spark.app.name: IndexNetFlowEventsDemo
 spark.master: local[4]
 spark.driver.memory: 1G
 spark.driver.cores: 1
 spark.executor.memory: 2G
 spark.executor.instances: 4
 spark.executor.cores: 2
 spark.yarn.queue: default
 spark.yarn.maxAppAttempts: 4
 spark.yarn.am.attemptFailuresValidityInterval: 1h
 spark.yarn.max.executor.failures: 20
 spark.yarn.executor.failuresValidityInterval: 1h
 spark.task.maxFailures: 8
 spark.serializer: org.apache.spark.serializer.KryoSerializer
 spark.streaming.batchDuration: 4000
 spark.streaming.backpressure.enabled: false
 spark.streaming.unpersist: false
 spark.streaming.blockInterval: 500
 spark.streaming.kafka.maxRatePerPartition: 3000
 spark.streaming.timeout: -1
 spark.streaming.unpersist: false
 spark.streaming.kafka.maxRetries: 3
 spark.streaming.ui.retainedBatches: 200
 spark.streaming.receiver.writeAheadLog.enable: false
 spark.ui.port: 4050

 controllerServiceConfigurations:

 - controllerService: elasticsearch_service
 component: com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_ClientService
 type: service
 documentation: elasticsearch 2.4.0 service implementation
 configuration:
 hosts: sandbox:9300
 cluster.name: elasticsearch
 batch.size: 20000

 streamConfigurations:

Stream 1 : parse incoming Netflow (Binary format) lines

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the logs sent in logisland_raw topic and push the processing output into logisland_events topic.

We can define some serializers to marshall all records from and to a topic.

Parsing
- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: A processor chain that transforms Netflow events into Logisland records
 configuration:
 kafka.input.topics: netflow
 kafka.output.topics: logisland_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 2
 processorConfigurations:

Within this stream there is a single processor in the processor chain: the Netflow processor. It takes an incoming Netflow event/notice binary record, parses it and computes a Logisland Record as a sequence of fields that were contained in the binary record.

Transform Netflow events into Logisland records
 - processor: Netflow adaptor
 component: com.hurence.logisland.processor.netflow.ParseNetflowEvent
 type: parser
 documentation: A processor that transforms Netflow events into LogIsland events
 configuration:
 debug: false
 enrich.record: false

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

Stream 2: Index the processed records into Elasticsearch

The second Kafka stream will handle Records pushed into the logisland_events topic to index them into ElasticSearch. So there is no need to define an output topic:

Indexing
- stream: indexing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: processor
 documentation: A processor chain that pushes netflow events to ES
 configuration:
 kafka.input.topics: logisland_events
 kafka.output.topics: none
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: none
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:

The only processor in the processor chain of this stream is the BulkAddElasticsearch processor.

Bulk add into ElasticSearch
- processor: ES Publisher
 component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
 type: processor
 documentation: A processor that pushes Netflow events into ES
 configuration:
 elasticsearch.client.service: elasticsearch_service
 default.index: netflow
 default.type: events
 timebased.index: today
 es.index.field: search_index
 es.type.field: record_type

The default.index: netflow configuration parameter tells the processor to index events into
an index starting with the netflow string.
The timebased.index: today configuration parameter tells the processor to use the current date after the index prefix. Thus the index name is of the form /netflow.2017.03.30.

Finally, the es.type.field: record_type configuration parameter tells the processor to use the
record field record_type of the incoming record to determine the ElasticSearch type to use within the index.

4. Inject Netflow events into the system

Generate Netflow events to port 2055 of localhost

Now that we have our nifi flow listening on port 2055 from Netflow (V5) traffic and push them to kafka, we have to generate netflow traffic. For the purpose of this tutorial, as already mentioned, we will install and use a netflow traffic generator (but you can use whatever other way to generate Netflow V5 traffic to port 2055)

docker exec -ti logisland bash
cd /tmp
wget https://github.com/pazdera/NetFlow-Exporter-Simulator/archive/master.zip
unzip master.zip
cd NetFlow-Exporter-Simulator-master/
make
./nfgen #this command will generate netflow V5 traffic and send it to local port 2055.

5. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process
your data

[image: ../_images/spark-job-monitoring.png]

6. Use Kibana to inspect events

Inspect Netflow events under Discover tab

Open your browser and go to http://sandbox:5601/ [http://sandbox:5601/app/kibana#/settings/indices/?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:now-15m,mode:quick,to:now))]

Configure a new index pattern with netflow.* as the pattern name and @timestamp as the time value field.

[image: ../_images/kibana-configure-index-netflow.png]

Then browse “Discover” tab [http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:‘5%20seconds’,pause:!f,section:1,value:5000),time:(from:now-1h,mode:relative,to:now))], you should be able to explore your Netflow events.

[image: ../_images/kibana-logisland-metrics-netflow.png]

You have now to save your search by clicking the save icon. Save this search as “netflowsearch”

[image: ../_images/kibana-save-search.png]

Display network information in kibana dashboard

First, you need to import the predefined Kibana dashboard (download this file [https://github.com/Hurence/logisland/tree/master/logisland-documentation/_static/netflow_dashboard.json] first) under Settings tab, Objetcs subtab.

Select Import and load previously saved netflow_dashboard.json dashboard (it also contains required Kibana visualizations)

[image: ../_images/kibana-logisland-import-dashboard.png]

Then visit Dashboard tab, and open dashboard_netflow dashboard by clicking on Load Saved Dashboard. You should be able to visualize information about the generated traffic (choose the right time window, corresponding to the time of your traffic, in the right upper corner of kibana page)

[image: ../_images/kibana-logisland-dashboard.png]

 Capturing Network packets in Logisland

Capturing Network packets in Logisland

1. Network Packets

A network packet is a formatted unit of data carried by a network from one computer (or device) to another. For example, a web page or an email are carried as a series of packets of a certain size in bytes. Each packet carries the information that will help it get to its destination : the sender’s IP address, the intended receiver’s IP address, something that tells the network how many packets the message has been broken into, ...

Packet Headers

1. Protocol headers (IP, TCP, …)

This information is stored in different layers called “headers”, encapsulating the packet payload. For example, a TCP/IP packet is wrapped in a TCP header [https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure], which is in turn encapsulated in an IP header [https://en.wikipedia.org/wiki/IPv4#Header].

The individual packets for a given file or message may travel different routes through the Internet. When they have all arrived, they are reassembled by the TCP layer at the receiving end.

2. PCAP format specific headers

Packets can be either analysed in real-time (stream mode) or stored in files for upcoming analysis (batch mode). In the latter case, the packets are stored in the pcap format, adding some specific headers :

	a global header [https://wiki.wireshark.org/Development/LibpcapFileFormat#Global_Header] is added in the beginning of the pcap file

	a packet header [https://wiki.wireshark.org/Development/LibpcapFileFormat#Record_.28Packet.29_Header] is added in front of each packet

In this tutorial we are going to capture packets in live stream mode

Why capturing network packets ?

Packet sniffing, or packet analysis, is the process of capturing any data transmitted over the local network and searching for any information that may be useful for :

	Troubleshooting network problems

	Detecting network intrusion attempts

	Detecting network misuse by internal and external users

	Monitoring network bandwidth utilization

	Monitoring network and endpoint security status

	Gathering and report network statistics

Packets information collected by Logisland

LogIsland parses all the fields of IP protocol headers, namely :

1. IP Header fields

	IP version : ip_version

	Internet Header Length : ip_internet_header_length

	Type of Service : ip_type_of_service

	Datagram Total Length : ip_datagram_total_length

	Identification : ip_identification

	Flags : ip_flags

	Fragment offset : ip_fragment_offset

	Time To Live : ip_time_to_live

	Protocol : protocol

	Header Checksum : ip_checksum

	Source IP address : src_ip

	Destination IP address : dst_ip

	Options : ip_options (variable size)

	Padding : ip_padding (variable size)

2. TCP Header fields

	Source port number : src_port

	Destination port number : dest_port

	Sequence Number : tcp_sequence_number

	Acknowledgment Number : tcp_acknowledgment_number

	Data offset : tcp_data_offset

	Flags : tcp_flags

	Window size : tcp_window_size

	Checksum : tcp_checksum

	Urgent Pointer : tcp_urgent_pointer

	Options : tcp_options (variable size)

	Padding : tcp_padding (variable size)

3. UDP Header fields

	Source port number : src_port

	Destination port number : dest_port

	Segment total length : udp_segment_total_length

	Checksum : udp_checksum

2. Tutorial environment

This tutorial aims to show how to capture live Network Packets and process then in LogIsland. Through its out-of-the-box ParseNetworkPacket processor, LogIsland is able to receive and handle network packets captured by a packet sniffer tool.
Using LogIsland, you will be able to inspect those packets for network security, optimization or monitoring reasons.

In this tutorial, we will show you how to capture network packets, process those packets in LogIsland, index them in ElasticSearch and then display them in Kibana.

We will launch two streaming processors, one for parsing Network Packets into LogIsland packet records, and one to index those packet records in ElasticSearch.

Packet Capture Tool

For the purpose of this tutorial, we are going to capture network packets (off-the-wire) into a kafka topic using pycapa [https://github.com/apache/incubator-metron/tree/master/metron-sensors/pycapa] Apache probe, a tool based on Pcapy [https://github.com/CoreSecurity/pcapy], a Python extension module that interfaces with the libpcap [http://www.tcpdump.org] packet capture library.

For information, it is also possible to use the fastcapa [https://github.com/apache/incubator-metron/tree/master/metron-sensors/fastcapa] Apache probe, based on DPDK [http://dpdk.org/], intended for high-volume packet capture.

Note

You can download the latest release [https://github.com/Hurence/logisland/releases] of LogIsland and the YAML configuration file [https://github.com/Hurence/logisland/blob/master/logisland-framework/logisland-resources/src/main/resources/conf/index-network-packets.yml]
for this tutorial which can be also found under $LOGISLAND_HOME/conf directory in the LogIsland container.

3. Start LogIsland as a Docker container

LogIsland is packaged as a Docker container that you can build yourself or pull from Docker Hub.
The docker container is built from a Centos 6.4 image with the following tools enabled (among others)

	Kafka

	Spark

	Elasticsearch

	Kibana

	LogIsland

Pull the image from Docker Repository (it may take some time)

docker pull hurence/logisland

You should be aware that this Docker container is quite eager in RAM and will need at least 8G of memory to run smoothly.
Now run the container

run container
docker run \
 -it \
 -p 80:80 \
 -p 8080:8080 \
 -p 3000:3000 \
 -p 9200-9300:9200-9300 \
 -p 5601:5601 \
 -p 2181:2181 \
 -p 9092:9092 \
 -p 9000:9000 \
 -p 4050-4060:4050-4060 \
 --name logisland \
 -h sandbox \
 hurence/logisland bash

get container ip
docker inspect logisland

or if your are on mac os
docker-machine ip default

you should add an entry for sandbox (with the container ip) in your /etc/hosts as it will be easier to access to all web services in logisland running container.

Note

If you have your own Spark and Kafka cluster, you can download the latest release [https://github.com/Hurence/logisland/releases] and unzip on an edge node.

4. Parse Network Packets

In this tutorial we will capture network packets, process those packets in LogIsland and index them in ElasticSearch.

Connect a shell to your logisland container to launch LogIsland streaming jobs :

docker exec -ti logisland bash
cd $LOGISLAND_HOME
bin/logisland.sh --conf conf/index-network-packets.yml

Setup Spark/Kafka streaming engine

An Engine is needed to handle the stream processing. This conf/index-network-packets.yml configuration file defines a stream processing job setup.
The first section configures the Spark engine, we will use a KafkaStreamProcessingEngine :

engine:
 component: com.hurence.logisland.engine.spark.KafkaStreamProcessingEngine
 type: engine
 documentation: Parse network packets with LogIsland
 configuration:
 spark.app.name: ParseNetworkPacketDemo
 spark.master: local[4]
 spark.driver.memory: 1G
 spark.driver.cores: 1
 spark.executor.memory: 2G
 spark.executor.instances: 4
 spark.executor.cores: 2
 spark.yarn.queue: default
 spark.yarn.maxAppAttempts: 4
 spark.yarn.am.attemptFailuresValidityInterval: 1h
 spark.yarn.max.executor.failures: 20
 spark.yarn.executor.failuresValidityInterval: 1h
 spark.task.maxFailures: 8
 spark.serializer: org.apache.spark.serializer.KryoSerializer
 spark.streaming.batchDuration: 4000
 spark.streaming.backpressure.enabled: false
 spark.streaming.unpersist: false
 spark.streaming.blockInterval: 500
 spark.streaming.kafka.maxRatePerPartition: 3000
 spark.streaming.timeout: -1
 spark.streaming.unpersist: false
 spark.streaming.kafka.maxRetries: 3
 spark.streaming.ui.retainedBatches: 200
 spark.streaming.receiver.writeAheadLog.enable: false
 spark.ui.port: 4050

 controllerServiceConfigurations:

 - controllerService: elasticsearch_service
 component: com.hurence.logisland.service.elasticsearch.Elasticsearch_2_4_0_ClientService
 type: service
 documentation: elasticsearch 2.4.0 service implementation
 configuration:
 hosts: sandbox:9300
 cluster.name: elasticsearch
 batch.size: 4000

 streamConfigurations:

Stream 1 : parse incoming Network Packets

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the logs sent in logisland_input_packets_topic topic and push the processed packet records into logisland_parsed_packets_topic topic.

We can define some serializers to marshall all records from and to a topic.

Parsing
- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: A processor chain that parses network packets into Logisland records
 configuration:
 kafka.input.topics: logisland_input_packets_topic
 kafka.output.topics: logisland_parsed_packets_topic
 kafka.error.topics: logisland_error_packets_topic
 kafka.input.topics.serializer: com.hurence.logisland.serializer.BytesArraySerializer
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:

Within this stream there is a single processor in the processor chain: the ParseNetworkPacket processor. It takes an incoming network packet, parses it and computes a LogIsland record as a sequence of fields corresponding to packet headers fields.

Transform network packets into LogIsland packet records
- processor: ParseNetworkPacket processor
 component: com.hurence.logisland.processor.networkpacket.ParseNetworkPacket
 type: parser
 documentation: A processor that parses network packets into LogIsland records
 configuration:
 debug: true
 flow.mode: stream

This stream will process network packets as soon as they will be queued into logisland_input_packets_topic Kafka topic, each packet will be parsed as a record which will be pushed back to Kafka in the logisland_parsed_packets_topic topic.

Stream 2: Index the processed records into Elasticsearch

The second Kafka stream will handle Records pushed into the logisland_parsed_packets_topic topic to index them into ElasticSearch. So there is no need to define an output topic:

Indexing
- stream: indexing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: processor
 documentation: a processor that pushes events to ES
 configuration:
 kafka.input.topics: logisland_parsed_packets_topic
 kafka.output.topics: none
 kafka.error.topics: logisland_error_packets_topic
 kafka.input.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.output.topics.serializer: none
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 2
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:

The only processor in the processor chain of this stream is the BulkAddElasticsearch processor.

Bulk add into ElasticSearch
- processor: ES Publisher
 component: com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch
 type: processor
 documentation: A processor that pushes network packet records into ES
 configuration:
 elasticsearch.client.service: elasticsearch_service
 default.index: packets_index
 default.type: events
 timebased.index: today
 es.index.field: search_index
 es.type.field: record_type

The default.index: packets_index configuration parameter tells the elasticsearch processor to index records into an index starting with the packets_index string.
The timebased.index: today configuration parameter tells the processor to use the current date after the index prefix. Thus the index name is of the form /packets_index.2017.03.30.

Finally, the es.type.field: record_type configuration parameter tells the processor to use the
record field record_type of the incoming record to determine the ElasticSearch type to use within the index.

5. Stream network packets into the system

Let’s install and use the Apache pycapa probe to capture and send packets to kafka topics in real time.

Install pycapa probe

All required steps to install pycapa probe are explained in this site [https://github.com/apache/incubator-metron/tree/master/metron-sensors/pycapa], but here are the main installation steps :

	Install libpcap, pip (python-pip) and python-devel :

yum install libpcap
yum install python-pip
yum install python-devel

	Build pycapa probe from Metron repo

cd /tmp
git clone https://github.com/apache/incubator-metron.git
cd incubator-metron/metron-sensors/pycapa
pip install -r requirements.txt
python setup.py install

Capture network packets

To start capturing network packets into the topic logisland_input_packets_topic using pycapa probe, use the following command :

pycapa --producer --kafka sandbox:9092 --topic logisland_input_packets_topic -i eth0

6. Monitor your spark jobs and Kafka topics

Now go to http://sandbox:4050/streaming/ to see how fast Spark can process
your data

[image: ../_images/spark-streaming-packet-capture-job.png]

7. Use Kibana to inspect records

Inspect Network Packets under Discover tab

Open your browser and go to http://sandbox:5601/ [http://sandbox:5601/app/kibana#/settings/indices/?_g=(refreshInterval:(display:Off,pause:!f,value:0),time:(from:now-15m,mode:quick,to:now))]

Configure a new index pattern with packets.* as the pattern name and @timestamp as the time value field.

[image: ../_images/kibana-configure-index-packet.png]

Then browse “Discover” [http://sandbox:5601/app/kibana#/discover?_g=(refreshInterval:(display:‘5%20seconds’,pause:!f,section:1,value:5000),time:(from:now-1h,mode:relative,to:now))] tab, you should be able to explore your network packet records :

[image: ../_images/kibana-logisland-metrics-packet-stream-pycapa.png]

 API design

API design

logisland is a framework that you can extend through its API,
you can use it to build your own Processors or to build data processing apps over it.

Java API

You can extend logisland with the Java low-level API as described below.

The primary material : Records

The basic unit of processing is the Record.
A Record is a collection of Field, while a Field has a name, a type and a value.

You can instanciate a Record like in the following code snipet:

String id = "firewall_record1";
String type = "cisco";
Record record = new Record(type).setId(id);

assertTrue(record.isEmpty());
assertEquals(record.size(), 0);

A record is defined by its type and a collection of fields. there are three special fields:

// shortcut for id
assertEquals(record.getId(), id);
assertEquals(record.getField(FieldDictionary.RECORD_ID).asString(), id);

// shortcut for time
assertEquals(record.getTime().getTime(), record.getField(FieldDictionary.RECORD_TIME).asLong().longValue());

// shortcut for type
assertEquals(record.getType(), type);
assertEquals(record.getType(), record.getField(FieldDictionary.RECORD_TYPE).asString());
assertEquals(record.getType(), record.getField(FieldDictionary.RECORD_TYPE).getRawValue());

And the other fields have generic setters, getters and removers

record.setStringField("url_host", "origin-www.20minutes.fr")
 .setField("method", FieldType.STRING, "GET")
 .setField("response_size", FieldType.INT, 452)
 .setField("is_outside_office_hours", FieldType.BOOLEAN, false)
 .setField("tags", FieldType.ARRAY, Arrays.asList("spam", "filter", "mail"));

assertFalse(record.hasField("unkown_field"));
assertTrue(record.hasField("method"));
assertEquals(record.getField("method").asString(), "GET");
assertTrue(record.getField("response_size").asInteger() - 452 == 0);
assertTrue(record.getField("is_outside_office_hours").asBoolean());
record.removeField("is_outside_office_hours");
assertFalse(record.hasField("is_outside_office_hours"));

Fields are strongly typed, you can validate them

Record record = new StandardRecord();
record.setField("request_size", FieldType.INT, 1399);
assertTrue(record.isValid());
record.setField("request_size", FieldType.INT, "zer");
assertFalse(record.isValid());
record.setField("request_size", FieldType.INT, 45L);
assertFalse(record.isValid());
record.setField("request_size", FieldType.LONG, 45L);
assertTrue(record.isValid());
record.setField("request_size", FieldType.DOUBLE, 45.5d);
assertTrue(record.isValid());
record.setField("request_size", FieldType.DOUBLE, 45.5);
assertTrue(record.isValid());
record.setField("request_size", FieldType.DOUBLE, 45L);
assertFalse(record.isValid());
record.setField("request_size", FieldType.FLOAT, 45.5f);
assertTrue(record.isValid());
record.setField("request_size", FieldType.STRING, 45L);
assertFalse(record.isValid());
record.setField("request_size", FieldType.FLOAT, 45.5d);
assertFalse(record.isValid());

The tools to handle processing : Processor

logisland is designed as a component centric framework, so there’s a layer of abstraction to build configurable components.
Basically a component can be Configurable and Configured.

The most common component you’ll use is the Processor

Let’s explain the code of a basic MockProcessor, that doesn’t acheive a really useful work but which is really self-explanatory
we first need to extend AbstractProcessor class (or to implement Processor interface).

public class MockProcessor extends AbstractProcessor {

 private static Logger logger = LoggerFactory.getLogger(MockProcessor.class);
 private static String EVENT_TYPE_NAME = "mock";

Then we have to define a list of supported PropertyDescriptor. All theses properties and validation stuff are handled by
Configurable interface.

public static final PropertyDescriptor FAKE_MESSAGE
 = new PropertyDescriptor.Builder()
 .name("fake.message")
 .description("a fake message")
 .required(true)
 .addValidator(StandardPropertyValidators.NON_EMPTY_VALIDATOR)
 .defaultValue("yoyo")
 .build();

@Override
public final List<PropertyDescriptor> getSupportedPropertyDescriptors() {
 final List<PropertyDescriptor> descriptors = new ArrayList<>();
 descriptors.add(FAKE_MESSAGE);

 return Collections.unmodifiableList(descriptors);
}

then comes the initialization bloc of the component given a ComponentContext (more on this later)

@Override
public void init(final ComponentContext context) {
 logger.info("init MockProcessor");
}

And now the real business part with the process method which handles all the work on the record’s collection.

@Override
public Collection<Record> process(final ComponentContext context,
 final Collection<Record> collection) {
 // log inputs
 collection.stream().forEach(record -> {
 logger.info("mock processing record : {}", record)
 });

 // output a useless record
 Record mockRecord = new Record("mock_record");
 mockRecord.setField("incomingEventsCount", FieldType.INT, collection.size());
 mockRecord.setStringField("message",
 context.getProperty(FAKE_MESSAGE).asString());

 return Collections.singleton(mockRecord);
}

}

The runtime context : Instance

you can use your wonderful processor by setting its configuration and asking the ComponentFactory to give you one ProcessorInstance which is a ConfiguredComponent.

String message = "logisland rocks !";
Map<String, String> conf = new HashMap<>();
conf.put(MockProcessor.FAKE_MESSAGE.getName(), message);

ProcessorConfiguration componentConfiguration = new ProcessorConfiguration();
componentConfiguration.setComponent(MockProcessor.class.getName());
componentConfiguration.setType(ComponentType.PROCESSOR.toString());
componentConfiguration.setConfiguration(conf);

Optional<StandardProcessorInstance> instance =
 ComponentFactory.getProcessorInstance(componentConfiguration);
assertTrue(instance.isPresent());

Then you need a ComponentContext to run your processor.

ComponentContext context = new StandardComponentContext(instance.get());
Processor processor = instance.get().getProcessor();

And finally you can use it to process records

Record record = new Record("mock_record");
record.setId("record1");
record.setStringField("name", "tom");
List<Record> records =
 new ArrayList<>(processor.process(context, Collections.singleton(record)));

assertEquals(1, records.size());
assertTrue(records.get(0).hasField("message"));
assertEquals(message, records.get(0).getField("message").asString());

Chaining processors in a stream : RecordStream

Warning

@todo

Running the processor’s flow : Engine

Warning

@todo

Packaging and conf

The end user of logisland is not the developer, but the business analyst which does understand any line of code.
That’s why we can deploy all our components through yaml config files

- processor: mock_processor
 component: com.hurence.logisland.util.runner.MockProcessor
 type: parser
 documentation: a parser that produce events for nothing
 configuration:
 fake.message: the super message

Testing your processors : TestRunner

When you have coded your processor, pretty sure you want to test it with unit test.
The framework provides you with the TestRunner tool for that.
All you need is to instantiate a Testrunner with your Processor and its properties.

final String APACHE_LOG_SCHEMA = "/schemas/apache_log.avsc";
final String APACHE_LOG = "/data/localhost_access.log";
final String APACHE_LOG_FIELDS =
 "src_ip,identd,user,record_time,http_method,http_query,http_version,http_status,bytes_out";
final String APACHE_LOG_REGEX =
 "(\\S+)\\s+(\\S+)\\s+(\\S+)\\s+\\[([\\w:/]+\\s[+\\-]\\d{4})\\]\\s+\"(\\S+)\\s+(\\S+)\\s+(\\S+)\"\\s+(\\S+)\\s+(\\S+)";

final TestRunner testRunner = TestRunners.newTestRunner(new SplitText());
testRunner.setProperty(SplitText.VALUE_REGEX, APACHE_LOG_REGEX);
testRunner.setProperty(SplitText.VALUE_FIELDS, APACHE_LOG_FIELDS);
// check if config is valid
testRunner.assertValid();

Now enqueue some messages as if they were sent to input Kafka topics

testRunner.clearQueues();
testRunner.enqueue(SplitTextTest.class.getResourceAsStream(APACHE_LOG));

Now run the process method and check that every Record has been correctly processed.

testRunner.run();
testRunner.assertAllInputRecordsProcessed();
testRunner.assertOutputRecordsCount(200);
testRunner.assertOutputErrorCount(0);

You can validate that all output records are validated against an avro schema

final RecordValidator avroValidator = new AvroRecordValidator(SplitTextTest.class.getResourceAsStream
testRunner.assertAllRecords(avroValidator);

And check if your output records behave as expected.

MockRecord out = testRunner.getOutputRecords().get(0);
out.assertFieldExists("src_ip");
out.assertFieldNotExists("src_ip2");
out.assertFieldEquals("src_ip", "10.3.10.134");
out.assertRecordSizeEquals(9);
out.assertFieldEquals(FieldDictionary.RECORD_TYPE, "apache_log");
out.assertFieldEquals(FieldDictionary.RECORD_TIME, 1469342728000L);

REST API

You can extend logisland with the Java high-level REST API as described below.

Design Tools

The REST API is designed with Swagger [http://swagger.io]

You can use the docker image for the swagger-editor to edit the swagger yaml file and generate source code.

docker pull swaggerapi/swagger-editor
docker run -d -p 80:8080 swaggerapi/swagger-editor

If you’re under mac you can setup swagger-codegen

brew install swagger-codegen

or
wget https://oss.sonatype.org/content/repositories/releases/io/swagger/swagger-codegen-cli/2.2.1/swagger-codegen-cli-2.2.1.jar

You can then start to generate the source code from the swgger yaml file

swagger-codegen generate \
 --group-id com.hurence.logisland \
 --artifact-id logisland-agent \
 --artifact-version 0.10.0-rc1 \
 --api-package com.hurence.logisland.agent.rest.api \
 --model-package com.hurence.logisland.agent.rest.model \
 -o logisland-framework/logisland-agent \
 -l jaxrs \
 --template-dir logisland-framework/logisland-agent/src/main/swagger/templates \
 -i logisland-framework/logisland-agent/src/main/swagger/api-swagger.yaml

Swagger Jetty server

This server was generated by the swagger-codegen [https://github.com/swagger-api/swagger-codegen] project.
By using the OpenAPI-Spec [https://github.com/swagger-api/swagger-core/wiki] from a remote server,
you can easily generate a server stub.
This is an example of building a swagger-enabled JAX-RS server.

This example uses the JAX-RS [http://https://jax-rs-spec.java.net] framework.

To run the server, please execute the following:

cd logisland-framework/logisland-agent
mvn clean package jetty:run

You can then view the swagger.json [http://localhost:8080/agent/api/v0.10.0/swagger.json] .

> Note that if you have configured the host to be something other than localhost, the calls through
swagger-ui will be directed to that host and not localhost!

 Components

Components

You’ll find here the list of all usable Processors, Engines, Services and other components that can be usable out of the box in your analytics streams

BulkAddElasticsearch

Indexes the content of a Record in Elasticsearch using elasticsearch’s bulk processor

Class

com.hurence.logisland.processor.elasticsearch.BulkAddElasticsearch

Tags

elasticsearch

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
, and whether a property supports the Expression Language .

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	elasticsearch.client.service
	The instance of the Controller Service to use for accessing Elasticsearch.
	
	null
	
	

	default.index
	The name of the index to insert into
	
	null
	
	true

	default.type
	The type of this document (used by Elasticsearch for indexing and searching)
	
	null
	
	true

	timebased.index
	do we add a date suffix
	No date (no date added to default index), Today’s date (today’s date added to default index), yesterday’s date (yesterday’s date added to default index)
	no
	
	

	es.index.field
	the name of the event field containing es index name => will override index value if set
	
	null
	
	

	es.type.field
	the name of the event field containing es doc type => will override type value if set
	
	null
	
	

ConsolidateSession

The ConsolidateSession processor is the Logisland entry point to get and process events from the Web Analytics.As an example here is an incoming event from the Web Analytics:

“fields”: [{ “name”: “timestamp”, “type”: “long” },{ “name”: “remoteHost”, “type”: “string”},{ “name”: “record_type”, “type”: [“null”, “string”], “default”: null },{ “name”: “record_id”, “type”: [“null”, “string”], “default”: null },{ “name”: “location”, “type”: [“null”, “string”], “default”: null },{ “name”: “hitType”, “type”: [“null”, “string”], “default”: null },{ “name”: “eventCategory”, “type”: [“null”, “string”], “default”: null },{ “name”: “eventAction”, “type”: [“null”, “string”], “default”: null },{ “name”: “eventLabel”, “type”: [“null”, “string”], “default”: null },{ “name”: “localPath”, “type”: [“null”, “string”], “default”: null },{ “name”: “q”, “type”: [“null”, “string”], “default”: null },{ “name”: “n”, “type”: [“null”, “int”], “default”: null },{ “name”: “referer”, “type”: [“null”, “string”], “default”: null },{ “name”: “viewportPixelWidth”, “type”: [“null”, “int”], “default”: null },{ “name”: “viewportPixelHeight”, “type”: [“null”, “int”], “default”: null },{ “name”: “screenPixelWidth”, “type”: [“null”, “int”], “default”: null },{ “name”: “screenPixelHeight”, “type”: [“null”, “int”], “default”: null },{ “name”: “partyId”, “type”: [“null”, “string”], “default”: null },{ “name”: “sessionId”, “type”: [“null”, “string”], “default”: null },{ “name”: “pageViewId”, “type”: [“null”, “string”], “default”: null },{ “name”: “is_newSession”, “type”: [“null”, “boolean”],”default”: null },{ “name”: “userAgentString”, “type”: [“null”, “string”], “default”: null },{ “name”: “pageType”, “type”: [“null”, “string”], “default”: null },{ “name”: “UserId”, “type”: [“null”, “string”], “default”: null },{ “name”: “B2Bunit”, “type”: [“null”, “string”], “default”: null },{ “name”: “pointOfService”, “type”: [“null”, “string”], “default”: null },{ “name”: “companyID”, “type”: [“null”, “string”], “default”: null },{ “name”: “GroupCode”, “type”: [“null”, “string”], “default”: null },{ “name”: “userRoles”, “type”: [“null”, “string”], “default”: null },{ “name”: “is_PunchOut”, “type”: [“null”, “string”], “default”: null }]The ConsolidateSession processor groups the records by sessions and compute the duration between now and the last received event. If the distance from the last event is beyond a given threshold (by default 30mn), then the session is considered closed.The ConsolidateSession is building an aggregated session object for each active session.This aggregated object includes: - The actual session duration. - A boolean representing wether the session is considered active or closed. Note: it is possible to ressurect a session if for instance an event arrives after a session has been marked closed. - User related infos: userId, B2Bunit code, groupCode, userRoles, companyId - First visited page: URL - Last visited page: URL The properties to configure the processor are: - sessionid.field: Property name containing the session identifier (default: sessionId). - timestamp.field: Property name containing the timestamp of the event (default: timestamp). - session.timeout: Timeframe of inactivity (in seconds) after which a session is considered closed (default: 30mn). - visitedpage.field: Property name containing the page visited by the customer (default: location). - fields.to.return: List of fields to return in the aggregated object. (default: N/A)

Class

com.hurence.logisland.processor.consolidateSession.ConsolidateSession

Tags

analytics, web, session

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	debug
	Enable debug. If enabled, the original JSON string is embedded in the record_value field of the record.
	
	null
	
	

	session.timeout
	session timeout in sec
	
	1800
	
	

	sessionid.field
	the name of the field containing the session id => will override default value if set
	
	sessionId
	
	

	timestamp.field
	the name of the field containing the timestamp => will override default value if set
	
	h2kTimestamp
	
	

	visitedpage.field
	the name of the field containing the visited page => will override default value if set
	
	location
	
	

	userid.field
	the name of the field containing the userId => will override default value if set
	
	userId
	
	

	fields.to.return
	the list of fields to return
	
	null
	
	

	firstVisitedPage.out.field
	the name of the field containing the first visited page => will override default value if set
	
	firstVisitedPage
	
	

	lastVisitedPage.out.field
	the name of the field containing the last visited page => will override default value if set
	
	lastVisitedPage
	
	

	isSessionActive.out.field
	the name of the field stating whether the session is active or not => will override default value if set
	
	is_sessionActive
	
	

	sessionDuration.out.field
	the name of the field containing the session duration => will override default value if set
	
	sessionDuration
	
	

	eventsCounter.out.field
	the name of the field containing the session duration => will override default value if set
	
	eventsCounter
	
	

	firstEventDateTime.out.field
	the name of the field containing the date of the first event => will override default value if set
	
	firstEventDateTime
	
	

	lastEventDateTime.out.field
	the name of the field containing the date of the last event => will override default value if set
	
	lastEventDateTime
	
	

	sessionInactivityDuration.out.field
	the name of the field containing the session inactivity duration => will override default value if set
	
	sessionInactivityDuration
	
	

ConvertFieldsType

Converts a field value into the given type. does nothing if conversion is not possible

Class

com.hurence.logisland.processor.ConvertFieldsType

Tags

type, fields, update, convert

Properties

This component has no required or optional properties.

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

dynamic-properties

	Name
	Value
	Description
	EL

	field
	the new type
	convert field value into new type
	true

DebugStream

This is a processor that logs incoming records

Class

com.hurence.logisland.processor.DebugStream

Tags

record, debug

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	event.serializer
	the way to serialize event
	Json serialization (serialize events as json blocs), String serialization (serialize events as toString() blocs)
	json
	
	

DetectOutliers

Outlier Analysis: A Hybrid Approach

In order to function at scale, a two-phase approach is taken

For every data point

	Detect outlier candidates using a robust estimator of variability (e.g. median absolute deviation) that uses distributional sketching (e.g. Q-trees)

	Gather a biased sample (biased by recency)

	Extremely deterministic in space and cheap in computation

For every outlier candidate

	Use traditional, more computationally complex approaches to outlier analysis (e.g. Robust PCA) on the biased sample

	Expensive computationally, but run infrequently

This becomes a data filter which can be attached to a timeseries data stream within a distributed computational framework (i.e. Storm, Spark, Flink, NiFi) to detect outliers.

Class

com.hurence.logisland.processor.DetectOutliers

Tags

analytic, outlier, record, iot, timeseries

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	value.field
	the numeric field to get the value
	
	record_value
	
	

	time.field
	the numeric field to get the value
	
	record_time
	
	

	output.record.type
	the output type of the record
	
	alert_match
	
	

	rotation.policy.type
	...
	by_amount, by_time, never
	by_amount
	
	

	rotation.policy.amount
	...
	
	100
	
	

	rotation.policy.unit
	...
	milliseconds, seconds, hours, days, months, years, points
	points
	
	

	chunking.policy.type
	...
	by_amount, by_time, never
	by_amount
	
	

	chunking.policy.amount
	...
	
	100
	
	

	chunking.policy.unit
	...
	milliseconds, seconds, hours, days, months, years, points
	points
	
	

	sketchy.outlier.algorithm
	...
	SKETCHY_MOVING_MAD
	SKETCHY_MOVING_MAD
	
	

	batch.outlier.algorithm
	...
	RAD
	RAD
	
	

	global.statistics.min
	minimum value
	
	null
	
	

	global.statistics.max
	maximum value
	
	null
	
	

	global.statistics.mean
	mean value
	
	null
	
	

	global.statistics.stddev
	standard deviation value
	
	null
	
	

	zscore.cutoffs.normal
	zscoreCutoffs level for normal outlier
	
	0.000000000000001
	
	

	zscore.cutoffs.moderate
	zscoreCutoffs level for moderate outlier
	
	1.5
	
	

	zscore.cutoffs.severe
	zscoreCutoffs level for severe outlier
	
	10.0
	
	

	zscore.cutoffs.notEnoughData
	zscoreCutoffs level for notEnoughData outlier
	
	100
	
	

	smooth
	do smoothing ?
	
	false
	
	

	decay
	the decay
	
	0.1
	
	

	min.amount.to.predict
	minAmountToPredict
	
	100
	
	

	min_zscore_percentile
	minZscorePercentile
	
	50.0
	
	

	reservoir_size
	the size of points reservoir
	
	100
	
	

	rpca.force.diff
	No Description Provided.
	
	null
	
	

	rpca.lpenalty
	No Description Provided.
	
	null
	
	

	rpca.min.records
	No Description Provided.
	
	null
	
	

	rpca.spenalty
	No Description Provided.
	
	null
	
	

	rpca.threshold
	No Description Provided.
	
	null
	
	

EnrichRecordsElasticsearch

Enrich input records with content indexed in elasticsearch using multiget queries.
Each incoming record must be possibly enriched with information stored in elasticsearch.
The plugin properties are :
- es.index (String) : Name of the elasticsearch index on which the multiget query will be performed. This field is mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.
- record.key (String) : Name of the field in the input record containing the id to lookup document in elastic search. This field is mandatory.
- es.key (String) : Name of the elasticsearch key on which the multiget query will be performed. This field is mandatory.
- includes (ArrayList<String>) : List of patterns to filter in (include) fields to retrieve. Supports wildcards. This field is not mandatory.
- excludes (ArrayList<String>) : List of patterns to filter out (exclude) fields to retrieve. Supports wildcards. This field is not mandatory.

Each outcoming record holds at least the input record plus potentially one or more fields coming from of one elasticsearch document.

Class

com.hurence.logisland.processor.elasticsearch.EnrichRecordsElasticsearch

Tags

elasticsearch

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	elasticsearch.client.service
	The instance of the Controller Service to use for accessing Elasticsearch.
	
	null
	
	

	record.key
	The name of field in the input record containing the document id to use in ES multiget query
	
	null
	
	

	es.index
	The name of the ES index to use in multiget query.
	
	null
	
	

	es.type
	The name of the ES type to use in multiget query.
	
	null
	
	

	es.includes.field
	The name of the ES fields to include in the record.
	
	
	

	
	

	es.excludes.field
	The name of the ES fields to exclude.
	
	N/A
	
	

EvaluateJsonPath

Evaluates one or more JsonPath expressions against the content of a FlowFile. The results of those expressions are assigned to Records Fields depending on configuration of the Processor. JsonPaths are entered by adding user-defined properties; the name of the property maps to the Field Name into which the result will be placed. The value of the property must be a valid JsonPath expression. A Return Type of ‘auto-detect’ will make a determination based off the configured destination. If the JsonPath evaluates to a JSON array or JSON object and the Return Type is set to ‘scalar’ the Record will be routed to error. A Return Type of JSON can return scalar values if the provided JsonPath evaluates to the specified value. If the expression matches nothing, Fields will be created with empty strings as the value

Class

com.hurence.logisland.processor.EvaluateJsonPath

Tags

JSON, evaluate, JsonPath

Properties

This component has no required or optional properties.

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

dynamic-properties

	Name
	Value
	Description
	EL

	A Record field
	A JsonPath expression
	will be set to any JSON objects that match the JsonPath.
	

FetchHBaseRow

Fetches a row from an HBase table. The Destination property controls whether the cells are added as flow file attributes, or the row is written to the flow file content as JSON. This processor may be used to fetch a fixed row on a interval by specifying the table and row id directly in the processor, or it may be used to dynamically fetch rows by referencing the table and row id from incoming flow files.

Class

com.hurence.logisland.processor.hbase.FetchHBaseRow

Tags

hbase, scan, fetch, get, enrich

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
, and whether a property supports the Expression Language .

FilterRecords

Keep only records based on a given field value

Class

com.hurence.logisland.processor.FilterRecords

Tags

record, fields, remove, delete

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	field.name
	the field name
	
	record_id
	
	

	field.value
	the field value to keep
	
	null
	
	

GenerateRandomRecord

This is a processor that make random records given an Avro schema

Class

com.hurence.logisland.processor.GenerateRandomRecord

Tags

record, avro, generator

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	avro.output.schema
	the avro schema definition for the output serialization
	
	null
	
	

	min.events.count
	the minimum number of generated events each run
	
	10
	
	

	max.events.count
	the maximum number of generated events each run
	
	200
	
	

MatchQuery

Query matching based on Luwak [http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/]

you can use this processor to handle custom events defined by lucene queries
a new record is added to output each time a registered query is matched

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide [https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description] for supported operations

Warning

don’t forget to set numeric fields property to handle correctly numeric ranges queries

Class

com.hurence.logisland.processor.MatchQuery

Tags

analytic, percolator, record, record, query, lucene

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	numeric.fields
	a comma separated string of numeric field to be matched
	
	null
	
	

	output.record.type
	the output type of the record
	
	alert_match
	
	

	include.input.records
	if set to true all the input records are copied to output
	
	true
	
	

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

dynamic-properties

	Name
	Value
	Description
	EL

	query
	some Lucene query
	generate a new record when this query is matched
	true

ModifyId

modify id of records or generate it following defined rules

Class

com.hurence.logisland.processor.ModifyId

Tags

record, id, idempotent, generate, modify

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	id.generation.strategy
	the strategy to generate new Id
	generate a random uid (generate a randomUid using java library), generate a hash from fields (generate a hash from fields), generate a string from java pattern and fields (generate a string from java pattern and fields), generate a concatenation of type, time and a hash from fields (generate a concatenation of type, time and a hash from fields (as for generate_hash strategy))
	randomUuid
	
	

	fields.to.hash
	the comma separated list of field names (e.g. : ‘policyid,date_raw’
	
	record_raw_value
	
	

	hash.charset
	the charset to use to hash id string (e.g. ‘UTF-8’)
	
	UTF-8
	
	

	hash.algorithm
	the algorithme to use to hash id string (e.g. ‘SHA-256’
	SHA-384, SHA-224, SHA-256, MD2, SHA, SHA-512, MD5
	SHA-256
	
	

	java.formatter.string
	the format to use to build id string (e.g. ‘%4$2s %3$2s %2$2s %1$2s’ (see java Formatter)
	
	null
	
	

	language.tag
	the language to use to format numbers in string
	aa, ab, ae, af, ak, am, an, ar, as, av, ay, az, ba, be, bg, bh, bi, bm, bn, bo, br, bs, ca, ce, ch, co, cr, cs, cu, cv, cy, da, de, dv, dz, ee, el, en, eo, es, et, eu, fa, ff, fi, fj, fo, fr, fy, ga, gd, gl, gn, gu, gv, ha, he, hi, ho, hr, ht, hu, hy, hz, ia, id, ie, ig, ii, ik, in, io, is, it, iu, iw, ja, ji, jv, ka, kg, ki, kj, kk, kl, km, kn, ko, kr, ks, ku, kv, kw, ky, la, lb, lg, li, ln, lo, lt, lu, lv, mg, mh, mi, mk, ml, mn, mo, mr, ms, mt, my, na, nb, nd, ne, ng, nl, nn, no, nr, nv, ny, oc, oj, om, or, os, pa, pi, pl, ps, pt, qu, rm, rn, ro, ru, rw, sa, sc, sd, se, sg, si, sk, sl, sm, sn, so, sq, sr, ss, st, su, sv, sw, ta, te, tg, th, ti, tk, tl, tn, to, tr, ts, tt, tw, ty, ug, uk, ur, uz, ve, vi, vo, wa, wo, xh, yi, yo, za, zh, zu
	en
	
	

MultiGetElasticsearch

Retrieves a content indexed in elasticsearch using elasticsearch multiget queries.
Each incoming record contains information regarding the elasticsearch multiget query that will be performed. This information is stored in record fields whose names are configured in the plugin properties (see below) :
- index (String) : name of the elasticsearch index on which the multiget query will be performed. This field is mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.
- type (String) : name of the elasticsearch type on which the multiget query will be performed. This field is not mandatory.
- ids (String) : comma separated list of document ids to fetch. This field is mandatory and should not be empty, otherwise an error output record is sent for this specific incoming record.
- includes (String) : comma separated list of patterns to filter in (include) fields to retrieve. Supports wildcards. This field is not mandatory.
- excludes (String) : comma separated list of patterns to filter out (exclude) fields to retrieve. Supports wildcards. This field is not mandatory.

Each outcoming record holds data of one elasticsearch retrieved document. This data is stored in these fields :
- index (same field name as the incoming record) : name of the elasticsearch index.
- type (same field name as the incoming record) : name of the elasticsearch type.
- id (same field name as the incoming record) : retrieved document id.
- a list of String fields containing :

	field name : the retrieved field name

	field value : the retrieved field value

Class

com.hurence.logisland.processor.elasticsearch.MultiGetElasticsearch

Tags

elasticsearch

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	elasticsearch.client.service
	The instance of the Controller Service to use for accessing Elasticsearch.
	
	null
	
	

	es.index.field
	the name of the incoming records field containing es index name to use in multiget query.
	
	null
	
	

	es.type.field
	the name of the incoming records field containing es type name to use in multiget query
	
	null
	
	

	es.ids.field
	the name of the incoming records field containing es document Ids to use in multiget query
	
	null
	
	

	es.includes.field
	the name of the incoming records field containing es includes to use in multiget query
	
	null
	
	

	es.excludes.field
	the name of the incoming records field containing es excludes to use in multiget query
	
	null
	
	

NormalizeFields

Changes the name of a field according to a provided name mapping
...

Class

com.hurence.logisland.processor.NormalizeFields

Tags

record, fields, normalizer

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	conflict.resolution.policy
	waht to do when a field with the same name already exists ?
	nothing to do (leave record as it was), overwrite existing field (if field already exist), keep only old field and delete the other (keep only old field and delete the other), keep old field and new one (creates an alias for the new field)
	do_nothing
	
	

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

dynamic-properties

	Name
	Value
	Description
	EL

	alternative mapping
	a comma separated list of possible field name
	when a field has a name contained in the list it will be renamed with this property field name
	true

ParseBroEvent

The ParseBroEvent processor is the Logisland entry point to get and process Bro [https://www.bro.org] events. The Bro-Kafka plugin [https://github.com/bro/bro-plugins/tree/master/kafka] should be used and configured in order to have Bro events sent to Kafka. See the Bro/Logisland tutorial [http://logisland.readthedocs.io/en/latest/tutorials/indexing-bro-events.html] for an example of usage for this processor. The ParseBroEvent processor does some minor pre-processing on incoming Bro events from the Bro-Kafka plugin to adapt them to Logisland.

Basically the events coming from the Bro-Kafka plugin are JSON documents with a first level field indicating the type of the event. The ParseBroEvent processor takes the incoming JSON document, sets the event type in a record_type field and sets the original sub-fields of the JSON event as first level fields in the record. Also any dot in a field name is transformed into an underscore. Thus, for instance, the field id.orig_h becomes id_orig_h. The next processors in the stream can then process the Bro events generated by this ParseBroEvent processor.

As an example here is an incoming event from Bro:

{

“conn”: {

“id.resp_p”: 9092,

“resp_pkts”: 0,

“resp_ip_bytes”: 0,

“local_orig”: true,

“orig_ip_bytes”: 0,

“orig_pkts”: 0,

“missed_bytes”: 0,

“history”: “Cc”,

“tunnel_parents”: [],

“id.orig_p”: 56762,

“local_resp”: true,

“uid”: “Ct3Ms01I3Yc6pmMZx7”,

“conn_state”: “OTH”,

“id.orig_h”: “172.17.0.2”,

“proto”: “tcp”,

“id.resp_h”: “172.17.0.3”,

“ts”: 1487596886.953917

}

}

It gets processed and transformed into the following Logisland record by the ParseBroEvent processor:

“@timestamp”: “2017-02-20T13:36:32Z”

“record_id”: “6361f80a-c5c9-4a16-9045-4bb51736333d”

“record_time”: 1487597792782

“record_type”: “conn”

“id_resp_p”: 9092

“resp_pkts”: 0

“resp_ip_bytes”: 0

“local_orig”: true

“orig_ip_bytes”: 0

“orig_pkts”: 0

“missed_bytes”: 0

“history”: “Cc”

“tunnel_parents”: []

“id_orig_p”: 56762

“local_resp”: true

“uid”: “Ct3Ms01I3Yc6pmMZx7”

“conn_state”: “OTH”

“id_orig_h”: “172.17.0.2”

“proto”: “tcp”

“id_resp_h”: “172.17.0.3”

“ts”: 1487596886.953917

Class

com.hurence.logisland.processor.bro.ParseBroEvent

Tags

bro, security, IDS, NIDS

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	debug
	Enable debug. If enabled, the original JSON string is embedded in the record_value field of the record.
	
	null
	
	

ParseNetflowEvent

The Netflow V5 [http://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/netflow/nfwhite.html] processor is the Logisland entry point to process Netflow (V5) events. NetFlow is a feature introduced on Cisco routers that provides the ability to collect IP network traffic.We can distinguish 2 components:

-Flow exporter: aggregates packets into flows and exports flow records (binary format) towards one or more flow collectors

-Flow collector: responsible for reception, storage and pre-processing of flow data received from a flow exporter

The collected data are then available for analysis purpose (intrusion detection, traffic analysis...)
Netflow are sent to kafka in order to be processed by logisland.
In the tutorial we will simulate Netflow traffic using nfgen [https://github.com/pazdera/NetFlow-Exporter-Simulator]. this traffic will be sent to port 2055. The we rely on nifi to listen of that port for incoming netflow (V5) traffic and send them to a kafka topic. The Netflow processor could thus treat these events and generate corresponding logisland records. The following processors in the stream can then process the Netflow records generated by this processor.

Class

com.hurence.logisland.processor.netflow.ParseNetflowEvent

Tags

netflow, security

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	debug
	Enable debug. If enabled, the original JSON string is embedded in the record_value field of the record.
	
	null
	
	

	output.record.type
	the output type of the record
	
	netflowevent
	
	

	enrich.record
	Enrich data. If enabledthe netflow record is enriched with inferred data
	
	false
	
	

ParseNetworkPacket

The ParseNetworkPacket processor is the LogIsland entry point to parse network packets captured either off-the-wire (stream mode) or in pcap format (batch mode). In batch mode, the processor decodes the bytes of the incoming pcap record, where a Global header followed by a sequence of [packet header, packet data] pairs are stored. Then, each incoming pcap event is parsed into n packet records. The fields of packet headers are then extracted and made available in dedicated record fields. See the Capturing Network packets tutorial [http://logisland.readthedocs.io/en/latest/tutorials/indexing-network-packets.html] for an example of usage of this processor.

Class

com.hurence.logisland.processor.networkpacket.ParseNetworkPacket

Tags

PCap, security, IDS, NIDS

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	debug
	Enable debug.
	
	false
	
	

	flow.mode
	Flow Mode. Indicate whether packets are provided in batch mode (via pcap files) or in stream mode (without headers). Allowed values are batch and stream.
	batch, stream
	null
	
	

ParseProperties

Parse a field made of key=value fields separated by spaces
a string like “a=1 b=2 c=3” will add a,b & c fields, respectively with values 1,2 & 3 to the current Record

Class

com.hurence.logisland.processor.ParseProperties

Tags

record, properties, parser

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	properties.field
	the field containing the properties to split and treat
	
	null
	
	

ParseUserAgent

The user-agent processor allows to decompose User-Agent value from an HTTP header into several attributes of interest. There is no standard format for User-Agent strings, hence it is not easily possible to use regexp to handle them. This processor rely on the YAUAA library [https://github.com/nielsbasjes/yauaa] to do the heavy work.

Class

com.hurence.logisland.processor.useragent.ParseUserAgent

Tags

User-Agent, clickstream, DMP

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	debug
	Enable debug.
	
	false
	
	

	cache.enabled
	Enable caching. Caching to avoid to redo the same computation for many identical User-Agent strings.
	
	true
	
	

	cache.size
	Set the size of the cache.
	
	1000
	
	

	useragent.field
	Must contain the name of the field that contains the User-Agent value in the incoming record.
	
	null
	
	

	useragent.keep
	Defines if the field that contained the User-Agent must be kept or not in the resulting records.
	
	true
	
	

	confidence.enabled
	Enable confidence reporting. Each field will report a confidence attribute with a value comprised between 0 and 10000.
	
	false
	
	

	ambiguity.enabled
	Enable ambiguity reporting. Reports a count of ambiguities.
	
	false
	
	

	fields
	Defines the fields to be returned.
	
	DeviceClass, DeviceName, DeviceBrand, DeviceCpu, DeviceFirmwareVersion, DeviceVersion, OperatingSystemClass, OperatingSystemName, OperatingSystemVersion, OperatingSystemNameVersion, OperatingSystemVersionBuild, LayoutEngineClass, LayoutEngineName, LayoutEngineVersion, LayoutEngineVersionMajor, LayoutEngineNameVersion, LayoutEngineNameVersionMajor, LayoutEngineBuild, AgentClass, AgentName, AgentVersion, AgentVersionMajor, AgentNameVersion, AgentNameVersionMajor, AgentBuild, AgentLanguage, AgentLanguageCode, AgentInformationEmail, AgentInformationUrl, AgentSecurity, AgentUuid, FacebookCarrier, FacebookDeviceClass, FacebookDeviceName, FacebookDeviceVersion, FacebookFBOP, FacebookFBSS, FacebookOperatingSystemName, FacebookOperatingSystemVersion, Anonymized, HackerAttackVector, HackerToolkit, KoboAffiliate, KoboPlatformId, IECompatibilityVersion, IECompatibilityVersionMajor, IECompatibilityNameVersion, IECompatibilityNameVersionMajor, __SyntaxError__, Carrier, GSAInstallationID, WebviewAppName, WebviewAppNameVersionMajor, WebviewAppVersion, WebviewAppVersionMajor
	
	

PutHBaseCell

Adds the Contents of a Record to HBase as the value of a single cell

Class

com.hurence.logisland.processor.hbase.PutHBaseCell

Tags

hadoop, hbase

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
, and whether a property supports the Expression Language .

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	hbase.client.service
	The instance of the Controller Service to use for accessing HBase.
	
	null
	
	

	table.name.field
	The field containing the name of the HBase Table to put data into
	
	null
	
	true

	row.identifier.field
	Specifies field containing the Row ID to use when inserting data into HBase
	
	null
	
	true

	row.identifier.encoding.strategy
	Specifies the data type of Row ID used when inserting data into HBase. The default behavior is to convert the row id to a UTF-8 byte array. Choosing Binary will convert a binary formatted string to the correct byte[] representation. The Binary option should be used if you are using Binary row keys in HBase
	String (Stores the value of row id as a UTF-8 String.), Binary (Stores the value of the rows id as a binary byte array. It expects that the row id is a binary formatted string.)
	String
	
	

	column.family.field
	The field containing the Column Family to use when inserting data into HBase
	
	null
	
	true

	column.qualifier.field
	The field containing the Column Qualifier to use when inserting data into HBase
	
	null
	
	true

	batch.size
	The maximum number of Records to process in a single execution. The Records will be grouped by table, and a single Put per table will be performed.
	
	25
	
	

	record.schema
	the avro schema definition for the Avro serialization
	
	null
	
	

	record.serializer
	the serializer needed to i/o the record in the HBase row
	kryo serialization (serialize events as json blocs), json serialization (serialize events as json blocs), avro serialization (serialize events as avro blocs), no serialization (send events as bytes)
	com.hurence.logisland.serializer.KryoSerializer
	
	

	table.name.default
	The table table to use if table name field is not set
	
	null
	
	

	column.family.default
	The column family to use if column family field is not set
	
	null
	
	

	column.qualifier.default
	The column qualifier to use if column qualifier field is not set
	
	null
	
	

RemoveFields

Removes a list of fields defined by a comma separated list of field names

Class

com.hurence.logisland.processor.RemoveFields

Tags

record, fields, remove, delete

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	fields.to.remove
	the comma separated list of field names (e.g. ‘policyid,date_raw’
	
	null
	
	

RunPython

!!!! WARNING !!!!

The RunPython processor is currently an experimental feature : it is delivered as is, with the current set of features and is subject to modifications in API or anything else in further logisland releases without warnings. There is no tutorial yet. If you want to play with this processor, use the python-processing.yml example and send the apache logs of the index apache logs tutorial. The debug stream processor at the end of the stream should output events in stderr file of the executors from the spark console.

This processor allows to implement and run a processor written in python. This can be done in 2 ways. Either directly defining the process method code in the script.code.process configuration property or poiting to an external python module script file in the script.path configuration property. Directly defining methods is called the inline mode whereas using a script file is called the file mode. Both ways are mutually exclusive. Whether using the inline of file mode, your python code may depend on some python dependencies. If the set of python dependencies already delivered with the Logisland framework is not sufficient, you can use the dependencies.path configuration property to give their location. Currently only the nltk python library is delivered with Logisland.

Class

com.hurence.logisland.processor.scripting.python.RunPython

Tags

scripting, python

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	script.code.imports
	For inline mode only. This is the pyhton code that should hold the import statements if required.
	
	null
	
	

	script.code.init
	The python code to be called when the processor is initialized. This is the python equivalent of the init method code for a java processor. This is not mandatory but can only be used if script.code.process is defined (inline mode).
	
	null
	
	

	script.code.process
	The python code to be called to process the records. This is the pyhton equivalent of the process method code for a java processor. For inline mode, this is the only minimum required configuration property. Using this property, you may also optionally define the script.code.init and script.code.imports properties.
	
	null
	
	

	script.path
	The path to the user’s python processor script. Use this property for file mode. Your python code must be in a python file with the following constraints: let’s say your pyhton script is named MyProcessor.py. Then MyProcessor.py is a module file that must contain a class named MyProcessor which must inherits from the Logisland delivered class named AbstractProcessor. You can then define your code in the process method and in the other traditional methods (init...) as you would do in java in a class inheriting from the AbstractProcessor java class.
	
	null
	
	

	dependencies.path
	The path to the additional dependencies for the user’s python code, whether using inline or file mode. This is optional as your code may not have additional dependencies. If you defined script.path (so using file mode) and if dependencies.path is not defined, Logisland will scan a potential directory named dependencies in the same directory where the script file resides and if it exists, any python code located there will be loaded as dependency as needed.
	
	null
	
	

	logisland.dependencies.path
	The path to the directory containing the python dependencies shipped with logisland. You should not have to tune this parameter.
	
	null
	
	

SampleRecords

Query matching based on Luwak [http://www.confluent.io/blog/real-time-full-text-search-with-luwak-and-samza/]

you can use this processor to handle custom events defined by lucene queries
a new record is added to output each time a registered query is matched

A query is expressed as a lucene query against a field like for example:

message:'bad exception'
error_count:[10 TO *]
bytes_out:5000
user_name:tom*

Please read the Lucene syntax guide [https://lucene.apache.org/core/5_5_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description] for supported operations

Warning

don’t forget to set numeric fields property to handle correctly numeric ranges queries

Class

com.hurence.logisland.processor.SampleRecords

Tags

analytic, sampler, record, iot, timeseries

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	record.value.field
	the name of the numeric field to sample
	
	record_value
	
	

	record.time.field
	the name of the time field to sample
	
	record_time
	
	

	sampling.algorithm
	the implementation of the algorithm
	none, lttb, average, first_item, min_max, mode_median
	null
	
	

	sampling.parameter
	the parmater of the algorithm
	
	null
	
	

SelectDistinctRecords

Keep only distinct records based on a given field

Class

com.hurence.logisland.processor.SelectDistinctRecords

Tags

record, fields, remove, delete

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	field.name
	the field to distinct records
	
	record_id
	
	

SendMail

The SendMail processor is aimed at sending an email (like for instance an alert email) from an incoming record. There are three ways an incoming record can generate an email according to the special fields it must embed. Here is a list of the record fields that generate a mail and how they work:

	mail_text: this is the simplest way for generating a mail. If present, this field means to use its content (value) as the payload of the mail to send. The mail is sent in text format if there is only this special field in the record. Otherwise, used with either mail_html or mail_use_template, the content of mail_text is the aletrnative text to the HTML mail that is generated.

	mail_html: this field specifies that the mail should be sent as HTML and the value of the field is mail payload. If mail_text is also present, its value is used as the alternative text for the mail. mail_html cannot be used with mail_use_template: only one of those two fields should be present in the record.

	mail_use_template: If present, this field specifies that the mail should be sent as HTML and the HTML content is to be generated from the template in the processor configuration key html.template. The template can contain parameters which must also be present in the record as fields. See documentation of html.template for further explanations. mail_use_template cannot be used with mail_html: only one of those two fields should be present in the record.

If allow_overwrite configuration key is true, any mail.* (dot format) configuration key may be overwritten with a matching field in the record of the form mail_* (underscore format). For instance if allow_overwrite is true and mail.to is set to config_address@domain.com, a record generating a mail with a mail_to field set to record_address@domain.com will send a mail to record_address@domain.com.

Apart from error records (when he is unable to process the incoming record or to send the mail), this processor is not expected to produce any output records.

Class

com.hurence.logisland.processor.SendMail

Tags

smtp, email, e-mail, mail, mailer, sendmail, message, alert, html

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	debug
	Enable debug. If enabled, debug information are written to stdout.
	
	false
	
	

	smtp.server
	FQDN, hostname or IP address of the SMTP server to use.
	
	null
	
	

	smtp.port
	TCP port number of the SMTP server to use.
	
	25
	
	

	smtp.security.username
	SMTP username.
	
	null
	
	

	smtp.security.password
	SMTP password.
	
	null
	
	

	smtp.security.ssl
	Use SSL under SMTP or not (SMTPS). Default is false.
	
	false
	
	

	mail.from.address
	Valid mail sender email address.
	
	null
	
	

	mail.from.name
	Mail sender name.
	
	null
	
	

	mail.bounce.address
	Valid bounce email address (where error mail is sent if the mail is refused by the recipient server).
	
	null
	
	

	mail.replyto.address
	Reply to email address.
	
	null
	
	

	mail.subject
	Mail subject.
	
	[LOGISLAND] Automatic email
	
	

	mail.to
	Comma separated list of email recipients. If not set, the record must have a mail_to field and allow_overwrite configuration key should be true.
	
	null
	
	

	allow_overwrite
	If true, allows to overwrite processor configuration with special record fields (mail_to, mail_from_address, mail_from_name, mail_bounce_address, mail_replyto_address, mail_subject). If false, special record fields are ignored and only processor configuration keys are used.
	
	true
	
	

	html.template
	HTML template to use. It is used when the incoming record contains a mail_use_template field. The template may contain some parameters. The parameter format in the template is of the form ${xxx}. For instance ${param_user} in the template means that a field named param_user must be present in the record and its value will replace the ${param_user} string in the HTML template when the mail will be sent. If some parameters are declared in the template, everyone of them must be present in the record as fields, otherwise the record will generate an error record. If an incoming record contains a mail_use_template field, a template must be present in the configuration and the HTML mail format will be used. If the record also contains a mail_text field, its content will be used as an alternative text message to be used in the mail reader program of the recipient if it does not supports HTML.
	
	null
	
	

SplitText

This is a processor that is used to split a String into fields according to a given Record mapping

Class

com.hurence.logisland.processor.SplitText

Tags

parser, regex, log, record

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	value.regex
	the regex to match for the message value
	
	null
	
	

	value.fields
	a comma separated list of fields corresponding to matching groups for the message value
	
	null
	
	

	key.regex
	the regex to match for the message key
	
	.*
	
	

	key.fields
	a comma separated list of fields corresponding to matching groups for the message key
	
	record_raw_key
	
	

	record.type
	default type of record
	
	record
	
	

	keep.raw.content
	do we add the initial raw content ?
	
	true
	
	

	timezone.record.time
	what is the time zone of the string formatted date for ‘record_time’ field.
	
	UTC
	
	

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

dynamic-properties

	Name
	Value
	Description
	EL

	alternative regex & mapping
	another regex that could match
	this regex will be tried if the main one has not matched. It must be in the form alt.value.regex.1 and alt.value.fields.1
	true

See Also:

com.hurence.logisland.processor.SplitTextMultiline

SplitTextMultiline

No description provided.

Class

com.hurence.logisland.processor.SplitTextMultiline

Tags

None.

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	regex
	the regex to match
	
	null
	
	

	fields
	a comma separated list of fields corresponding to matching groups
	
	null
	
	

	event.type
	the type of event
	
	null
	
	

SplitTextWithProperties

This is a processor that is used to split a String into fields according to a given Record mapping

Class

com.hurence.logisland.processor.SplitTextWithProperties

Tags

parser, regex, log, record

Properties

In the list below, the names of required properties appear in bold. Any other properties (not in bold) are considered optional. The table also indicates any default values
.

allowable-values

	Name
	Description
	Allowable Values
	Default Value
	Sensitive
	EL

	value.regex
	the regex to match for the message value
	
	null
	
	

	value.fields
	a comma separated list of fields corresponding to matching groups for the message value
	
	null
	
	

	key.regex
	the regex to match for the message key
	
	.*
	
	

	key.fields
	a comma separated list of fields corresponding to matching groups for the message key
	
	record_raw_key
	
	

	record.type
	default type of record
	
	record
	
	

	keep.raw.content
	do we add the initial raw content ?
	
	true
	
	

	properties.field
	the field containing the properties to split and treat
	
	properties
	
	

Dynamic Properties

Dynamic Properties allow the user to specify both the name and value of a property.

dynamic-properties

	Name
	Value
	Description
	EL

	alternative regex & mapping
	another regex that could match
	this regex will be tried if the main one has not matched. It must be in the form alt.value.regex.1 and alt.value.fields.1
	true

See Also:

com.hurence.logisland.processor.SplitTextMultiline

 What’s new in logisland ?

What’s new in logisland ?

v0.9.7

	add HDFS burner feature processor #89

	add ExtractJsonPath processor #90

	check compatibility with HDP 2.5 #112

	sometimes the drivers fails with status SUCCEEDED which prevents YARN to resubmit the job automatically #105

	logisland crashes when starting with wrong offsets #111

	add type checking for SplitText component enhancement #46

	add optional regex to SplitText #106

	add record schema management with ConvertFieldsType processor #75

	add field auto extractor processor : SplitTextWithProperties #49

	add a new RemoveFields processor

	add a NormalizeFields processor #88

	Add notion of asserting the asserted fields in MockRecord

v0.9.6

	add a Documentation generator for plugins feature #69

	add SQL aggregator plugin feature #74

	#66 merge elasticsearch-shaded and elasticsearch-plugin enhancement

	#73 add metric aggregator processor feature

	#57 add sampling processor enhancement

	#72 integrate OutlierDetection plugin feature

	#34 integrate QueryMatcherProcessor bug

v0.9.5

	generify API from Event to Records

	add docker container for demo

	add topic auto-creation parameters

	add Record validators

	add processor chaining that works globally on an input/output topic and pipe in-memory contexts into sub-processors

	better error handling for SplitText

	testRunner API

	migrate LogParser to LogProcessor Interface

	reporting metrics to know where are exactly the processors on the topics

	add an HDFSBurner Engine

	yarn stability improvements

	more spark parameters handling

	driver failover through Zookeper offset checkpointing

	add raw_content to event if regex matching failed in SplitText

	integration testing with embedded Kafka/Spark

	processor chaining

	

 Frequently Asked Questions.

Frequently Asked Questions.

I already use ELK, why would I need to use LogIsland ?

Well, at first one could say that that both stacks are overlapping,
but the real purpose of the LogIsland framework is the abstraction of scalability of log aggregation.

In fact if you already have an ELK stack you’ll likely want to make it scale (without pain) in both volume and features ways.
LogIsland will be used for this purpose as an EOM (Event Oriented Middleware) based on Kafka & Spark, where you can plug advanced features
with ease.

So you just have to route your logs from the Logstash (or Flume, or Collectd, ...) agents to Kafka topics and launch parsers and processors.

Do I need Hadoop to play with LogIsland ?

No, if your goal is simply to aggregate a massive amount of logs in an Elasticsearch cluster,
and to define complex event processing rules to generate new events you definitely don’t need an Hadoop cluster.

Kafka topics can be used as an high throughput log buffer for sliding-windows event processing.
But if you need advanced batch analytics, it’s really easy to dump your logs into an hadoop cluster to build machine learning models.

How do I make it scale ?

LogIsland is made for scalability, it relies on Spark and Kafka which are both scalable by essence, to scale LogIsland just have to add more kafka brokers and more Spark slaves.
This is the manual way, but we’ve planned in further releases to provide auto-scaling either Docker Swarn support or Mesos Marathon.

What’s the difference between Apache NIFI and LogIsland ?

Apache NIFI is a powerful ETL very well suited to process incoming data such as logs file, process & enrich them and send them out to any datastore.
You can do that as well with LogIsland but LogIsland is an event oriented framework designed to process huge amount of events in a Complex Event Processing
manner not a Single Event Processing as NIFI does. LogIsland is not an ETL or a DataFlow, the main goal is to extract information from realtime data.

Anyway you can use Apache NIFI to process your logs and send them to Kafka in order to be processed by LogIsland

Error : realpath not found

If you don’t have the realpath command on you system you may need to install it:

brew install coreutils
sudo apt-get install coreutils

How to deploy LogIsland as a Single node Docker container

The easy way : you start a small Docker container with all you need inside (Elasticsearch, Kibana, Kafka, Spark, LogIsland + some usefull tools)

Docker [https://www.docker.com] is becoming an unavoidable tool to isolate a complex service component. It’s easy to manage, deploy and maintain. That’s why you can start right away to play with LogIsland through the Docker image provided from Docker HUB [https://hub.docker.com/r/hurence/logisland/]

Get the LogIsland image
docker pull hurence/logisland

Run the container
docker run \
 -it \
 -p 80:80 \
 -p 9200-9300:9200-9300 \
 -p 5601:5601 \
 -p 2181:2181 \
 -p 9092:9092 \
 -p 9000:9000 \
 -p 4050-4060:4050-4060 \
 --name logisland \
 -h sandbox \
 hurence/logisland:latest bash

Connect a shell to your LogIsland container
docker exec -ti logisland bash

How to deploy LogIsland in an Hadoop cluster ?

When it comes to scale, you’ll need a cluster. logisland is just a framework that facilitates running sparks jobs over Kafka topics so if you already have a cluster you just have to get the latest logisland binaries and unzip them to a edge node of your hadoop cluster.

For now Log-Island is fully compatible with HDP 2.4 but it should work well on any cluster running Kafka and Spark.
Get the latest release and build the package.

You can download the latest release build [https://github.com/Hurence/logisland/releases/download/v0.9.5/logisland-0.9.5-bin.tar.gz]

git clone git@github.com:Hurence/logisland.git
cd logisland-0.9.5
mvn clean install -DskipTests

This will produce a logisland-assembly/target/logisland-0.9.5-bin.tar.gz file that you can untar into any folder of your choice in a edge node of your cluster.

Please read this excellent article on spark long running job setup : http://mkuthan.github.io/blog/2016/09/30/spark-streaming-on-yarn/

How can I configure Kafka to avoid irrecoverable exceptions ?

If the message must be reliable published on Kafka cluster, Kafka producer and Kafka cluster needs to be configured with care. It needs to be done independently of chosen streaming framework.

Kafka producer buffers messages in memory before sending. When our memory buffer is exhausted, Kafka producer must either stop accepting new records (block) or throw errors. By default Kafka producer blocks and this behavior is legitimate for stream processing. The processing should be delayed if Kafka producer memory buffer is full and could not accept new messages. Ensure that block.on.buffer.full Kafka producer configuration property is set.

With default configuration, when Kafka broker (leader of the partition) receive the message, store the message in memory and immediately send acknowledgment to Kafka producer. To avoid data loss the message should be replicated to at least one replica (follower). Only when the follower acknowledges the leader, the leader acknowledges the producer.

This guarantee you will get with ack=all property in Kafka producer configuration. This guarantees that the record will not be lost as long as at least one in-sync replica remains alive.

But this is not enough. The minimum number of replicas in-sync must be defined. You should configure min.insync.replicas property for every topic. I recommend to configure at least 2 in-sync replicas (leader and one follower). If you have datacenter with two zones, I also recommend to keep leader in the first zone and 2 followers in the second zone. This configuration guarantees that every message will be stored in both zones.

We are almost done with Kafka cluster configuration. When you set min.insync.replicas=2 property, the topic should be replicated with factor 2 + N. Where N is the number of brokers which could fail, and Kafka producer will still be able to publish messages to the cluster. I recommend to configure replication factor 3 for the topic (or more).

With replication factor 3, the number of brokers in the cluster should be at least 3 + M. When one or more brokers are unavailable, you will get underreplicated partitions state of the topics. With more brokers in the cluster than replication factor, you can reassign underreplicated partitions and achieve fully replicated cluster again. I recommend to build the 4 nodes cluster at least for topics with replication factor 3.

The last important Kafka cluster configuration property is unclean.leader.election.enable. It should be disabled (by default it is enabled) to avoid unrecoverable exceptions from Kafka consumer. Consider the situation when the latest committed offset is N, but after leader failure, the latest offset on the new leader is M < N. M < N because the new leader was elected from the lagging follower (not in-sync replica). When the streaming engine ask for data from offset N using Kafka consumer, it will get an exception because the offset N does not exist yet. Someone will have to fix offsets manually.

So the minimal recommended Kafka setup for reliable message processing is:

4 nodes in the cluster
unclean.leader.election.enable=false in the brokers configuration
replication factor for the topics – 3
min.insync.replicas=2 property in topic configuration
ack=all property in the producer configuration
block.on.buffer.full=true property in the producer configuration

With the above setup your configuration should be resistant to single broker failure, and Kafka consumers will survive new leader election.

You could also take look at replica.lag.max.messages and replica.lag.time.max.ms properties for tuning when the follower is removed from ISR by the leader. But this is out of this blog post scope.

How to purge a Kafka queue ?

Temporarily update the retention time on the topic to one second:

kafka-topics.sh --zookeeper localhost:13003 --alter --topic MyTopic --config retention.ms=1000

then wait for the purge to take effect (about one minute). Once purged, restore the previous retention.ms value.

You can also try to delete the topic :

add one line to server.properties file under config folder:

delete.topic.enable=true

then, you can run this command:

bin/kafka-topics.sh --zookeeper localhost:2181 --delete --topic test

 Index

Index

 Welcome to the LogIsland documentation!

Welcome to the LogIsland documentation!

This readme will walk you through navigating and building the LogIsland documentation, which is included
here with the source code.

Read on to learn more about viewing documentation in plain text (i.e., markdown) or building the
documentation yourself. Why build it yourself? So that you have the docs that corresponds to
whichever version of LogIsland you currently have checked out of revision control.

Prerequisites

The LogIsland documentation build uses Sphinx
To get started you can run the following commands

pip install -r requirements.txt
sudo pip install Sphinx

Generating the Documentation HTML

We include the LogIsland documentation as part of the source (as opposed to using a hosted wiki, such as
the github wiki, as the definitive documentation) to enable the documentation to evolve along with
the source code and be captured by revision control (currently git). This way the code automatically
includes the version of the documentation that is relevant regardless of which version or release
you have checked out or downloaded.

This documentation is built using [Sphinx](http://sphinx-doc.org). It also uses some extensions for theming and REST API
documentation support.

Start by installing the requirements:

pip install -r requirements.txt

Then you can generate the HTML version of the docs:

make html

The root of the documentation will be at _build/html/index.html

While editing the documentation, you can get a live preview using python-livepreview. Install the Python library:

pip install livereload

Then run the monitoring script in the background:

python autoreload.py &

If you install the [browser extensions](http://livereload.com/) then everything should update every time any files are
saved without any manual steps on your part.

 User experience & Workflow

User experience & Workflow

 The agent

The agent

![agent smith](http://img09.deviantart.net/b93e/i/2007/141/a/2/matrix_agent_smith__stencil_by_vegetablelambtartary.jpg)

The Logisland Agent provides a serving layer for your metadata.

	provides a RESTful interface for storing and retrieving Avro schemas.

	stores a versioned history of all schemas

	provides multiple compatibility settings

	allows evolution of schemas according to the configured compatibility setting.

	provides serializers that plug into Kafka clients that handle schema storage and retrieval for Kafka messages that are sent in the Avro format.

Deployment

We recommend to use Spotify/Kafka container because the main hurdle of running Kafka in Docker is that it depends on Zookeeper. Compared to other Kafka docker images, this one runs both Zookeeper and Kafka in the same container. This means:

	No dependency on an external Zookeeper host, or linking to another container

	Zookeeper and Kafka are configured to work together out of the box

start a Docker container containing Kafka
docker run \
 -p 2181:2181 -p 9092:9092 \
 --env ADVERTISED_HOST=`docker-machine ip \`docker-machine active\`` \
 --env ADVERTISED_PORT=9092 spotify/kafka

export KAFKA=`docker-machine ip \`docker-machine active\``:9092

Starting the Logisland Agent is simple once its dependencies are running.

The default settings in logisland.properties work automatically with
the default settings for local ZooKeeper and Kafka nodes.
bin/logisland-agent-start conf/logisland.properties

On production environment you’ll need to export SPARK_HOME and HADOOP_CONF_DIR variables :

export SPARK_HOME=/opt/spark-2.1.0-bin-hadoop2.7
export HADOOP_CONF_DIR=/usr/hdp/current/hadoop-client/conf/

Schema registry

The following assumes you have Kafka and an instance of the Logisland Agent running using the default settings.

A quick list of REST call to schema registry

Register a new version of a schema under the subject "Kafka-key"
curl -X POST -H "Content-Type: application/vnd.schemaregistry.v1+json" \
 --data '{"schema": "{\"type\": \"string\"}"}' \
 http://localhost:8081/subjects/Kafka-key/versions
 {"id":1}

Register a new version of a schema under the subject "Kafka-value"
curl -X POST -H "Content-Type: application/vnd.schemaregistry.v1+json" \
 --data '{"schema": "{\"type\": \"string\"}"}' \
 http://localhost:8081/subjects/Kafka-value/versions
 {"id":1}

List all subjects
curl -X GET http://localhost:8081/subjects
 ["Kafka-value","Kafka-key"]

List all schema versions registered under the subject "Kafka-value"
curl -X GET http://localhost:8081/subjects/Kafka-value/versions
 [1]

Fetch a schema by globally unique id 1
curl -X GET http://localhost:8081/schemas/ids/1
 {"schema":"\"string\""}

Fetch version 1 of the schema registered under subject "Kafka-value"
curl -X GET http://localhost:8081/subjects/Kafka-value/versions/1
 {"subject":"Kafka-value","version":1,"id":1,"schema":"\"string\""}

Fetch the most recently registered schema under subject "Kafka-value"
curl -X GET http://localhost:8081/subjects/Kafka-value/versions/latest
 {"subject":"Kafka-value","version":1,"id":1,"schema":"\"string\""}

Check whether a schema has been registered under subject "Kafka-key"
curl -X POST -H "Content-Type: application/vnd.schemaregistry.v1+json" \
 --data '{"schema": "{\"type\": \"string\"}"}' \
 http://localhost:8081/subjects/Kafka-key
 {"subject":"Kafka-key","version":1,"id":1,"schema":"\"string\""}

Test compatibility of a schema with the latest schema under subject "Kafka-value"
curl -X POST -H "Content-Type: application/vnd.schemaregistry.v1+json" \
 --data '{"schema": "{\"type\": \"string\"}"}' \
 http://localhost:8081/compatibility/subjects/Kafka-value/versions/latest
 {"is_compatible":true}

Get top level config
curl -X GET http://localhost:8081/config
 {"compatibilityLevel":"BACKWARD"}

Update compatibility requirements globally
curl -X PUT -H "Content-Type: application/vnd.schemaregistry.v1+json" \
 --data '{"compatibility": "NONE"}' \
 http://localhost:8081/config
 {"compatibility":"NONE"}

Update compatibility requirements under the subject "Kafka-value"
curl -X PUT -H "Content-Type: application/vnd.schemaregistry.v1+json" \
 --data '{"compatibility": "BACKWARD"}' \
 http://localhost:8081/config/Kafka-value
 {"compatibility":"BACKWARD"}

 How to extend LogIsland ?

How to extend LogIsland ?

In this new tutorial we will learn how to create a custom log parser and how to run it inside logisland Docker container

Maven setup

Create a folder for your super-plugin project :

mkdir -p super-plugin/lib
mkdir -p src/main/java/com/hurence/logisland

First you need to build logisland and to get the pom and jars availables for your projet

git clone https://github.com/Hurence/logisland.git
cd logisland

logisland jar dependencies are released on maven central :

<!-- https://mvnrepository.com/artifact/com.hurence.logisland/logisland-api -->
<dependency>
 <groupId>com.hurence.logisland</groupId>
 <artifactId>logisland-api</artifactId>
 <version>0.9.5</version>
</dependency>

├── pom.xml
├── src
│ ├── main
│ │ ├── java
│ │ │ └── com
│ │ │ └── hurence
│ │ │ └── logisland
│ │ │ └── MyLogParser.java
│ │ └── resources
│ └── test
│ └── java

Edit your pom.xml as follows

Write a custom log parser
—

Write your a custom LogParser for your super-plugin in /src/main/java/com/hurence/logisland/MyLogParser.java

Our parser will analyze some Proxy Log String in the following form :

“Thu Jan 02 08:43:39 CET 2014 GET 10.118.32.164 193.251.214.117 http webmail.laposte.net 80 /webmail/fr_FR/Images/Images-20130905100226/Images/RightJauge.gif 724 409 false false”

package com.hurence.logisland;

import com.hurence.logisland.event.Event;
import com.hurence.logisland.log.LogParser;
import com.hurence.logisland.log.LogParserException;

import java.text.SimpleDateFormat;

/**
 * NetworkFlow(
 * timestamp: Long,
 * method: String,
 * ipSource: String,
 * ipTarget: String,
 * urlScheme: String,
 * urlHost: String,
 * urlPort: String,
 * urlPath: String,
 * requestSize: Int,
 * responseSize: Int,
 * isOutsideOfficeHours: Boolean,
 * isHostBlacklisted: Boolean,
 * tags: String)
 */
public class ProxyLogParser implements LogParser {

 /**
 * take a line of csv and convert it to a NetworkFlow
 *
 * @param s
 * @return
 */
 public Event[] parse(String s) throws LogParserException {

 Event event = new Event();

 try {
 String[] records = s.split("\t");

 try {
 SimpleDateFormat sdf = new SimpleDateFormat("EEE MMM dd HH:mm:ss z yyyy");
 event.put("timestamp", "long", sdf.parse(records[0]).getTime());
 } catch (Exception e) {
 event.put("parsing_error", e.getMessage());
 }

 event.put("method", "string", records[1]);
 event.put("ipSource", "string", records[2]);
 event.put("ipTarget", "string", records[3]);
 event.put("urlScheme", "string", records[4]);
 event.put("urlHost", "string", records[5]);
 event.put("urlPort", "string", records[6]);
 event.put("urlPath", "string", records[7]);

 try {
 event.put("requestSize", "int", Integer.parseInt(records[8]));
 } catch (Exception e) {
 event.put("parsing_error", e.getMessage());
 }
 try {
 event.put("responseSize", "int", Integer.parseInt(records[9]));
 } catch (Exception e) {
 event.put("parsing_error", e.getMessage());
 }
 try {
 event.put("isOutsideOfficeHours", "bool", Boolean.parseBoolean(records[10]));
 } catch (Exception e) {
 event.put("parsing_error", e.getMessage());
 }
 try {
 event.put("isHostBlacklisted", "bool", Boolean.parseBoolean(records[11]));
 } catch (Exception e) {
 event.put("parsing_error", e.getMessage());
 }

 if (records.length == 13) {
 String tags = records[12].replaceAll("\"", "").replaceAll("\\[", "").replaceAll("\\]", "");
 event.put("tags", "string", tags);
 }

 }catch (Exception e) {
 event.put("parsing_error", e.getMessage());
 }

 Event[] result = new Event[1];
 result[0] = event;

 return result;
 }

}

Test your parser with JUnit

which can be tested (not really deeply ...) with a small unit test

Deploy the custom component to Docker container

Now you have a fully functionnal plugin and you can build it with maven by running

mvn package

It’s time to deploy our splendid little plugin to logisland. We’ll get the Docker image, run this container by mounting a host directory into the container to share the brand new jar we have built.

docker pull hurence/logisland:latest
docker run \
 -it \
 -p 80:80 \
 -p 9200-9300:9200-9300 \
 -p 5601:5601 \
 -p 2181:2181 \
 -p 9092:9092 \
 -p 9000:9000 \
 -p 4050-4060:4050-4060 \
 --name logisland \
 -h sandbox \
 -v $HOME/Documents/workspace/hurence/projects/super-plugin/:/usr/local/logisland/super-plugin \
 hurence/logisland:latest bash

cd $LOGISLAND_HOME
cp super-plugin/target/super-plugin-1.0-SNAPSHOT.jar lib/

Start a log parser

A Log parser takes a log line as a String and computes an Event as a sequence of fields.
Let’s start a LogParser streaming job with a custom ApacheLogParser.
This stream will process log entries as soon as they will be queued into li-apache-logs Kafka topics, each log will
be parsed as an event which will be pushed back to Kafka in the li-apache-event topic.

$LOGISLAND_HOME/bin/log-parser \
 --kafka-brokers sandbox:9092 \
 --input-topics li-proxy-logs \
 --output-topics li-proxy-events \
 --max-rate-per-partition 10000 \
 --log-parser com.hurence.logisland.ProxyLogParser

As in the [getting started guide]({{ site.baseurl }}/getting-started) you can use kafkacat tool to inject the following [proxy log file]({{ site.baseurl }}/public/proxy.log)

cat proxy.log | kafkacat -P -b sandbox -t li-proxy-logs

In another Docker shell, you should see that some events are going into Kafka (even if they’re serialized in Kryo and you can’t understand anything)

/usr/local/kafka/bin/kafka-console-consumer.sh –from-beginning –topic li-proxy-event –zookeeper sandbox:2181

Rebuild your jar, redeploy it to logisland/lib dir and launch a mapper job in the Docker container :

Each event will be sent to Elasticsearch by bulk.

$LOGISLAND_HOME/bin/event-indexer \
 --kafka-brokers sandbox:9092 \
 --es-host sandbox \
 --index-name li-apache \
 --input-topics li-apache-event \
 --max-rate-per-partition 10000 \
 --event-mapper com.hurence.logisland.plugin.apache.ProxyEventMapper

Open up your browser and go to http://sandbox:5601/. Enjoy !

checkout the code of this tutorial here https://github.com/Hurence/logisland-plugin-template.git

 Generate Unique Ids

Generate Unique Ids

We will add a stage to the “index-apache-logs” tutorial. We will ensure every Record has a unique Id before injecting into Es.
This way we are sure to not have documentAlreadyException or to have two records that overwrite themselves.

Note

If you are not familiar with logisland yet. You should really read “index-apache-logs” tutorial before this one.

We assume we are at the stage just before injecting apache logs into ES from “index-apache-logs”

Stream 1 : parse incoming apache log lines

Inside this engine you will run a Kafka stream of processing, so we setup input/output topics and Kafka/Zookeeper hosts.
Here the stream will read all the logs sent in logisland_raw topic and push the processing output into logisland_events topic.

Note

We want to specify an Avro output schema to validate our ouput records (and force their types accordingly).
It’s really for other streams to rely on a schema when processing records from a topic.

We can define some serializers to marshall all records from and to a topic.

parsing
- stream: parsing_stream
 component: com.hurence.logisland.stream.spark.KafkaRecordStreamParallelProcessing
 type: stream
 documentation: a processor that links
 configuration:
 kafka.input.topics: logisland_raw
 kafka.output.topics: logisland_events
 kafka.error.topics: logisland_errors
 kafka.input.topics.serializer: none
 kafka.output.topics.serializer: com.hurence.logisland.serializer.KryoSerializer
 kafka.error.topics.serializer: com.hurence.logisland.serializer.JsonSerializer
 avro.output.schema: >
 { "version":1,
 "type": "record",
 "name": "com.hurence.logisland.record.apache_log",
 "fields": [
 { "name": "record_errors", "type": [{"type": "array", "items": "string"},"null"] },
 { "name": "record_raw_key", "type": ["string","null"] },
 { "name": "record_raw_value", "type": ["string","null"] },
 { "name": "record_id", "type": ["string"] },
 { "name": "record_time", "type": ["long"] },
 { "name": "record_type", "type": ["string"] },
 { "name": "src_ip", "type": ["string","null"] },
 { "name": "http_method", "type": ["string","null"] },
 { "name": "bytes_out", "type": ["long","null"] },
 { "name": "http_query", "type": ["string","null"] },
 { "name": "http_version","type": ["string","null"] },
 { "name": "http_status", "type": ["string","null"] },
 { "name": "identd", "type": ["string","null"] },
 { "name": "user", "type": ["string","null"] }]}
 kafka.metadata.broker.list: sandbox:9092
 kafka.zookeeper.quorum: sandbox:2181
 kafka.topic.autoCreate: true
 kafka.topic.default.partitions: 4
 kafka.topic.default.replicationFactor: 1
 processorConfigurations:

Within this stream a SplitText processor takes a log line as a String and computes a Record as a sequence of fields.

parse apache logs
- processor: apache_parser
 component: com.hurence.logisland.processor.SplitText
 type: parser
 documentation: a parser that produce events from an apache log REGEX
 configuration:
 value.regex: (\S+)\s+(\S+)\s+(\S+)\s+\[([\w:\/]+\s[+\-]\d{4})\]\s+"(\S+)\s+(\S+)\s*(\S*)"\s+(\S+)\s+(\S+)
 value.fields: src_ip,identd,user,record_time,http_method,http_query,http_version,http_status,bytes_out

Within this stream a ModifyId processor takes Record ouput from SplitText processor and computes a new Id for them using the
value of their field “record_raw_value” that should content the original line string of the apache log. It will hash it using
“SHA-256” java implementation algorithm, using the charset “UTF-8”.

parse apache logs
- processor: apache_parser

component: com.hurence.logisland.processor.ModifyId
type: parser
documentation: a parser that modify record Ids
configuration:

id.generation.strategy: hashFields
hash.charset: UTF-8
fields.to.hash: record_raw_value
hash.algorithm: SHA-256

This stream will process log entries as soon as they will be queued into logisland_raw Kafka topics, each log will
be parsed as an event which will be pushed back to Kafka in the logisland_events topic.

Then you can process to your indexation in Elasticsearch as in “index-apache-logs” example.

_static/data-driven-computing.png
Log Parser/

System Monitoring/
b """ Actions

Anomaly Fault Problem
Detection Diagnosis Determination

I
! ==
Real Time Management I [oy
_____________________ I Correlation/Dependency
Knowledge

torical Knowledge Management
E"‘ Collection | == i

N — T
- [EOtfine Analysiss S=Ses S S |

_static/traces.png
Traces

Traffic Capture Start

J;: Ato B: Port 81

b AtoC: Port 80

e}

Traffic
Capture End

K- A to D: Port 347

T: C to F: Port 80

=]

it

Time

_static/spark-streaming-packet-capture-job.png
¢ & C | ® 127001:4050/streaming/ aww 51 » A
Spoﬁ? o Jobs Stages Storage Environment Executors | Streaming parsePCapEventsDemo application Ul
Streaming Statistics
Running batches of 4 seconds for 7 minutes 42 seconds since 2017/04/26 19:42:01 (115 completed batches, 9004 records)
Timelines (Last 115 batches, 0 active, 115 completed) Histograms
records/sec 0 20 40 60 80 100 #baiches
100.00
80.00
» Input Rate 60.00
Avg: 19.57 records/sec 4000
20.00
0.00
19:42:08 19:49:44
sec 20 40 60 80 100 #baiches
s s s s
5.00
4.00
Scheduling Delay) 3.00
Avg: 26 ms 200
1.00
000 ———
19:42:08 19:49:44
sec 20 40 60 80 100 #baiches
s s s s
5.00
4.00
Processing Time (?) 3.00
Avg: 458 ms 200
1.00 -
0.00
19:42:08 19:49:44
sec 0 20 40 60 80 100 #baiches
o i o e
5.00
4.00
Total Delay (7 3.00
Avg: 484 ms 200
1.00 -
0,00
19:42:08 19:49:44
Active Batches (0)
Batch Time Input Size ‘Scheduling Delay (7 Processing Time (?) ‘Output Ops: Succeeded/Total Status.

Completed Batches (last 115 out of 115)

Batch Time Input Size ‘Scheduling Delay (7 Processing Time () Total Delay) Output Ops: Succeeded/Total

2017/04126 19:49:44. 16 records. 6ms 02s 02s [J—
2017/04126 19:49:40 18 records. 7ms 02s 02s [R
2017/04126 19:49:36 12 records. 2ms 02s 02s [J—
2017/04126 19:49:32 14 records. ams 02s 03s [R
2017/04/26 19:49:28 10 records. 1ms 03s 03s [J—
2017/04126 19:49:24 12 records. oms 03s 03s [R
2017/04126 19:49:20 16 records. 2ms 02s 02s [J—
2017/04126 19:49:16 16 records. 5ms 03s 03s [R
2017/04126 19:49:12 65 records 3ms 03s 03s [J—
2017/04/26 19:49:08 55 records 2ms 01s 01s [R
2017/04126 19:49:04 54 records 1ms 02s 02s [J—
2017/04/126 19:49:00 60 records 1ms 03s 03s [R
2017/04126 19:48:56 73 records 9ms 03s 03s [J—
2017/04126 19:48:52 75 records ams 03s 03s [R
2017/04126 19:48:48 164 records 3ms 04s 04s [J—

_static/kibana-apache-logs.png
® © ® /[y indexapacheLogs - Streamin: x / [Discover - Kibana X ({8 elasticsearch-head x { /) cat: output specific number o' x |\ e

Y

¢ — C @ sandbox:5601/app/kibanat/discover? ¢

refreshinterval:(display:Off,pause:!fyalue:0) time:(from:'1995-06-29T22:00:00.000Z,mo.. A % | [€ @ % @& ¥ + O

CAutorirosh @) June 30t 1995, 0000:00.000 o Jul 8 1995, 0000:00.000.

e o e
e J msaron [|

E - o e

o o e Wt T 7 S e T e

[-

B - |

W mom s a e e

. LRIy

-

‘Seacted ks une 3001995, 0D0D0.000 -l 8 1995, 0000000 — by s
o0 <
Avalabe Fiids o
- = I I II I I II
i
K 5000
= . Lualllllaallllial (TR T Ll
e @timestamp per 3 hours
e .
e
Time _sourcs
it mathod
e > Wy 7th 1995, 14:55:52.000 getmestamps July 7th 1995, 14:55:52.000 Bytes_osts 7,067 Betp sethods GET betp_querys /ksc.hesl Betp statuss 200 besp versions HTTP/L.0
. Ldoatds - xecomd_ids 9afa42f5-0bBE-sesd-b3bS-F2dchaBIBab2 record _cew_valve: 130.103.8.217 - - [07/241/1995:08:55:52 -0400) Ger /ksc.he) w7
. vrsion P/1.0/200 7067 cocord_tines 805,121,752,000 secord_types spache_log sxc_ips 130.103.48.217 wsers - _ids AVBNvsnr4fukONTASIO _types apache_
» log _sadex: logisland 2016.11.09 _score:
) 0g og E
ecors s
> uly 7th 1995, 14i55552.000 getmestampr July 7eh 1995, 16:55:52.000 bytes_outs 5,866 heep methods GET heep querys /inages/ksclogo-sedium.gif hetp_statuss 200
acor ra v
= Bttp version: WITP/LO identds - record id: 36hG982-F533-40fb-b106-03FEChS22909 xecord ca_values spider.the.com - - (07/3u1/1995:08:55:52 -
T 0400) GeT /inages/ksclogo-ediun. 1 HTTP/1.0 200 5366 secord_times 805,121,752,000 record_trpes apache_log src_ips spider.the.con useri -
ecord type 41 AVANEVSQrAFUKOATATKE _trpes apache_Tog _tadexs logisland.2016.11.09 _seores
sreip
user » Wy 7th 1955, 14:55:51.000 getmestamps July 7h 1995, 14:55:51.000 Bytes_outs 3,047 betp methods GET besp_querys /history/apollo/inages/apollo-Togo.gif betp_statuss 20

© hetp_verstons WITP/LO ideneds - record.

© 1c753eda-beea-4773-9bfb-a5369be73441 record_rew_valua: ad03-025. conpuserve.con - - [07/1/199
5:08:55:51 -0400) GeT /history/apollo/inages/apollo-Togo.gi HTTP/1.0 200 3047 record_tise: 805,121,751,000 secord_types apache_log sre_ips ad

03:025.conpuserve.con waers - _{ds AVANEVSQréfukOATATKS _type: apache_log isdess logisland.2016.11.09 _scorer

> 3uly 7th 1985, 14:55i50.000 getmestamps July 7th 1995, 14:55:50.000 byses outs 7,067 heep methods GET hetp querys /ksc.himl heep statuss 200 heep version: WITP/LO

identar - racora La: 496B07S-3b1-46fb-930b-78ee604SSF18 record_rau_value: spider. the.con - - (07/3u1/1995:08:55:50 0400) GET /ksc.hex] HIT
P/1.0 200 7067 rocord_tine: 805,121,750,000 record type: apachelog scc_ips spider.the.com wsers - _ids AVANIngrfukORTAWFH _type: apache_
Tog _tadex: logis1and.2016.11.09 _score:

> 3uly 7th 1985, 14:55:49.000 geimestamps July 7th 1995, 14:55:49.000 byses_outs 40,310 heep methods GET hewp querys /shutle/countdown/count.gif heep_statuss 200
http veraion: HTTP/1.0 dsmtds - record ids ccfacdB0-1162-4F0c-99ef-d31F6S93728 record_raw_valus: gate.chips.ibm.con - - [07/3u1/1995:08:55:
49 -0400] GT /shuttle/countdown/count..giF HTTP/1.0 200 40310 record_tines B05,121,749,000 record type: apachelog see_ips gate.chips. ibm.con
users - _id: AVNGOIZr4fUkOATAYGQ _type: apache log _index: logisland.2016.11.09 _score:

_static/lambda-logicalArchi.png
Business operation

l

Batch Layer

~
’ Periodic snapshot N

Master dataset Batch l‘y,n
; -~
Immutable, Append-only View 1

\
Romdom READ supported
Random WRITE unsupported

Batch Bulk
Processor Loader Serving DB

\Y

Freezed input

Snapshot result
(potentially outdated)

\
N
~
7
Low latency L. I Z’
Incremental merge 17 atesf result 4]
(always updated >
Transaction Continuous Realtime Query g
Data Stream update Serving DB Processor c
c
Blend batch & realtime result O

Resolve conflict

Realtime Layer

_static/kibana-logisland-dashboard.png
/ Wl dashboard_netflo. x \{__\

& © C 0 | ® sandbox:5601/app/kibanatt/dashboard/dashboard_netFlow?_g=(refreshinterval(display:’5%20seconds’ pause:f section:1 value:5000) time:(From:2017-04-05T12:12:13.317Z mode:absoluteto:2017-04-05T1 @ % | H & B
Apps B hurence M logisland Wm stage <Y Spark Streaminc M questions/résur [} Mining Console | [I stage | Trello
ot e of Neow vent ,x Incorin ven e rtcl ’x
= ot Descendig - Q0 Count B
181,379 ;
9 . soess
= = >
Tops s Tops =i Nomber of Pckesper s prt (09 20 ,x
Top st port ’x Top 5t ,x NomberofPckes pr st port 1020 ,x
- () E IIIIII IIIIIIIIIII
Incomin flow pr P o 5) ,x
o e
incomin fon ,x

_static/file.png

_static/kibana-logisland-metrics.png
® © ® /[indexapacheLogs - Streamin: x / [Discover - Kibana X ({8 elasticsearch-head % { A\ cat: output specific number o' X | e

<« C | ® sandbox:5601/appykibanat/discover?.

refreshinterval:(display:Off,pause:!f,value:0) time:(fror

ow-15m,mode:quick to:now))&a.

ar|Ce ¥ Ga$+0

p— e 0110517201 v 1, 13217291~
e
g ..

Gtmmsirn H

-) . l .

s .

= Comatare ot

- "

e —

. o
S —
‘average_bytes per_second. - November 10th 2016, 11:08:20.000 geimestamp: November 10th 2016, 11:08:20.000 average bytes per_field: 29 average bytes per record: 148 average bytes per s

P—— 4 average_elelds por _rocord: 5 average_nua _records_per_secosds 111 coaponent_sase: Vatchauery error_percestage: O imput topics: logis]
and_aggregations nus incoaing messages: 20 nus incoming records: 20 mus outgoing_records: 2 output_topics: logisland alerts record_idi ¢
60896 1abd-46d5-a7cc-d184cA80Fd32 xecord_time: 1,478,772,500,055 rocord_types logisland setrics spack spp mame: QueryMatching

‘component_name ! N)
i, apark pactition 14: 0 tople offsst froms 180 tople offsst untili 200 total bytes: 295 total leldss 10 total processing tine in mer 1
input topics ot | s ik o /loqis1and. 2016.11.09/Toais1and necri s /AvhexykefukonTavx
numincoming messages.
num_incomig records etinestamp @Q 0 November 10th 2016, 11:08:20.000
um_outgoing records @Q @ AvhwoykesfukoaTARX
topics) Togisland.2016.12.09
rcord erors _score o
R type D Togistand_netrics
(e average bytes_per_field aam»
(D average bytes_per._record aam 1
racord type
s average bytes_per_second @am 16444
R average_fields per_record @ QM 5
o average nus_records_per_second @ @ @ 111
topi.ofsetuntl conponent._nane @ QM wachaery
tctaLyien error_percentage @amo
totailds input_topics @ Q[logisland_aggresations
totl_processing.time in.ms. nun_incoming_nessages aam o
nun_incoming_records aam
nun_outgoing_records aam?
output_topics @Qm logistland aterss
record_id @Q 0 4cadbs9s-1abd-46d5-a7ce-d18dcan0fe32
record_tine @am 1,478,772,500,055

@Q @ logisland_netrics

@Q [auerymatching

aamo
topic_offser_fron aam o
topic_offser_until aam o
ol byes aam s
total_fields aam w0

total_processing_timeinns @ Q@ 18

_static/apple-touch-icon-144-precomposed.png

_static/kafka-mgr.png
+ Brokers

Host

sandbox

9092

JMX Port

10101

Bytes In

Bytes Out

Combined Metrics

Rate
Messages in /sec

Bytes in /sec

Bytes out /sec

Bytes rejected /sec
Failed fetch request /sec

Failed produce request /sec

eeo00He
66666
86600

1min

5min

15 min

666008

_static/kibana-logisland-metrics-netflow.png
M Discover - kibana

x

Apache Spot (Incul x

e) e

& © C {0 | ® sandbox:5601/app/kibanat/discover?

(columns:(_source) index‘netFlow. intervalauto,query:(query stringan ¥ | Fd ® Bk

Selected Fields

Avilale Fieds [y
@timestamp
d
_index.
_type
doctets
dpkts
dstas
dst_host
dst_ mask
dstaddr
dstport
duration
frst
input
last

nexthop

Count

1000
s00
00
400
20

Apps B hurence M logisland Bm stage < Spark Streaminc [questions/résur (] Mining Console [T stage | Trello

39,726 hits

Aprl 7th 2017, 14:57:05.372 - April 7th 2017, 15:57:05.372 — by minute

i

1500 1505 1310 1515 1520 1525 1530 1535 1540 1545 1550 1535

Time.

@timestamp per minute
~

April 7th 2017, 15:56:54.000 gtimestanp: April 7th 2017, 15:56:54.000 dictets: 26,058,258 dPkts: 99,459

April 7th 2017, 15:5¢

dst_as: 0 dst_mask: 0 dstaddr: 192.168.1.101 dstport: 57,131
duration: 7,000 first: 2,732,000 input: 0 last: 2,739,000 nexthop: 0.0.
blfded42-d991-4edc-85ad-dco6T16133ac

0.0 output: 0 prot: 6 record id:

@timestamp: April 7th 2017, 15:56:54.000 doctets: 12,213,495 dPkts: 63,045
dst_as: 0 dst_host: localhost dst mask: 0 dstaddr: 127.0.0.1 dstport: 4
2,506 duration: © first: 2,720,000 input: © last: 2,720,000 nexthop: 0.
0.0.0 output: 0 prot: 6 record id: 4b54cabb-38c1-41c1-9cdf-bdadeb7ca7bf

_static/kibana-save-search.png
/ M Discover - Kibana

Selected Fields

@timestamp
d

_index
_type
doctets
dpkts
dstas
dst_host

dstioa

Available Fields. (o]

x \ G curlelasticsearch ¢ x) Index templatenc' x \ 2 elasticsearch-Hov x Y & database-Elastics

x \

Count

‘April 11th 2017,09:52:09.529 - Aprl 12th 2017, 09:52:09.529 — by 30 minutes

2500
2000
1500
1000
500
o
1100 1400 1700 2000 200 0200
@timestamp per 30 minutes
~
Time. _source:

27.000 doctets: 3,363,716

April 1ith 2017, 18:06:27.008 gtimestamp: April 11th 2017, 18

<« C) | ® sandbox:5601/app/kibanat/discover?_g=(filters:(),refreshinterval:(display:’5%20seconds’ pause:1F.section:1value:5000) time @ v | A ® B
Apps B hurence M logisland Wm stage <Y Spark Streaminc M questions/résur [} Mining Console | [I stage | Trello

o500

dPkts: 11,599 dst e

2,582 hits

o800

dst_ipd: 192.168.1.102 dst_mask: © dst_port: 35,002 duration: 54,000 first: 121,000 flags: 2
22 dmput: © last: 175,000 nexthop: ©.0.0.0 nmprot: 6 output: © record id: 632cedaa-8d4s-4dfi-

nav.xhtml

 Table of Contents

 		Welcome to logisland's documentation!

 		Introduction

 		Core concepts

 		What is a pattern ?

 		From raw to structure

 		Event pattern mining

 		Architecture

 		Data driven architecture

 		Technical design

 		Developer Guide

 		Workflows

 		Coding Guidelines

 		Contribute code

 		Build the code and run the tests

 		Prerequisites

 		Building

 		Release to maven repositories

 		Publish Docker image

 		Publish artifact to github

 		Tutorials

 		Index Apache logs

 		1. Start LogIsland as a Docker container

 		2. Parse the logs records

 		3. Inject some Apache logs into the system

 		4. Monitor your spark jobs and Kafka topics

 		5. Use Kibana to inspect the logs

 		Index Apache logs Enrichment

 		1. Start LogIsland as a Docker container

 		2. Inject some Apache logs into the system

 		3. Monitor your spark jobs and Kafka topics

 		4. Use Kibana to inspect the logs

 		Alerts & Query Matching

 		1. Setup SQL Aggregation Stream

 		2. Setup Query matching Stream on log Records

 		3. Setup Query matching Stream

 		4. Start logisland application

 		5. Check your alerts with Kibana

 		Time series sampling & Outliers detection

 		1. Setup the time series collection Stream

 		2. Setup the Outliers detection Stream

 		3. Setup the time series Sampling Stream

 		4. Setup the indexing Stream

 		4. Start logisland application

 		5. Check your alerts with Kibana

 		Bro/Logisland integration - Indexing Bro events

 		Bro and Logisland

 		Tutorial environment

 		1. Start the Docker container with LogIsland

 		2. Transform Bro events into Logisland records

 		3. Start the Docker container with Bro

 		4. Configure Bro to send events to Kafka

 		5. Generate some Bro events and notices

 		Netflow/Logisland integration - Handling Netflow traffic

 		Netflow and Logisland

 		Tutorial environment

 		1. Start LogIsland as a Docker container

 		2. Configuration steps

 		3. Parse Netflow records

 		4. Inject Netflow events into the system

 		5. Monitor your spark jobs and Kafka topics

 		6. Use Kibana to inspect events

 		Capturing Network packets in Logisland

 		1. Network Packets

 		2. Tutorial environment

 		3. Start LogIsland as a Docker container

 		4. Parse Network Packets

 		5. Stream network packets into the system

 		6. Monitor your spark jobs and Kafka topics

 		7. Use Kibana to inspect records

 		API design

 		Java API

 		The primary material : Records

 		The tools to handle processing : Processor

 		The runtime context : Instance

 		Chaining processors in a stream : RecordStream

 		Running the processor's flow : Engine

 		Packaging and conf

 		Testing your processors : TestRunner

 		REST API

 		Design Tools

 		Swagger Jetty server

 		Components

 		BulkAddElasticsearch

 		Class

 		Tags

 		Properties

 		ConsolidateSession

 		Class

 		Tags

 		Properties

 		ConvertFieldsType

 		Class

 		Tags

 		Properties

 		Dynamic Properties

 		DebugStream

 		Class

 		Tags

 		Properties

 		DetectOutliers

 		Class

 		Tags

 		Properties

 		EnrichRecordsElasticsearch

 		Class

 		Tags

 		Properties

 		EvaluateJsonPath

 		Class

 		Tags

 		Properties

 		Dynamic Properties

 		FetchHBaseRow

 		Class

 		Tags

 		Properties

 		FilterRecords

 		Class

 		Tags

 		Properties

 		GenerateRandomRecord

 		Class

 		Tags

 		Properties

 		MatchQuery

 		Class

 		Tags

 		Properties

 		Dynamic Properties

 		ModifyId

 		Class

 		Tags

 		Properties

 		MultiGetElasticsearch

 		Class

 		Tags

 		Properties

 		NormalizeFields

 		Class

 		Tags

 		Properties

 		Dynamic Properties

 		ParseBroEvent

 		Class

 		Tags

 		Properties

 		ParseNetflowEvent

 		Class

 		Tags

 		Properties

 		ParseNetworkPacket

 		Class

 		Tags

 		Properties

 		ParseProperties

 		Class

 		Tags

 		Properties

 		ParseUserAgent

 		Class

 		Tags

 		Properties

 		PutHBaseCell

 		Class

 		Tags

 		Properties

 		RemoveFields

 		Class

 		Tags

 		Properties

 		RunPython

 		Class

 		Tags

 		Properties

 		SampleRecords

 		Class

 		Tags

 		Properties

 		SelectDistinctRecords

 		Class

 		Tags

 		Properties

 		SendMail

 		Class

 		Tags

 		Properties

 		SplitText

 		Class

 		Tags

 		Properties

 		Dynamic Properties

 		See Also:

 		SplitTextMultiline

 		Class

 		Tags

 		Properties

 		SplitTextWithProperties

 		Class

 		Tags

 		Properties

 		Dynamic Properties

 		See Also:

 		What's new in logisland ?

 		v0.9.7

 		v0.9.6

 		v0.9.5

 		Frequently Asked Questions.

 		I already use ELK, why would I need to use LogIsland ?

 		Do I need Hadoop to play with LogIsland ?

 		How do I make it scale ?

 		What's the difference between Apache NIFI and LogIsland ?

 		Error : realpath not found

 		How to deploy LogIsland as a Single node Docker container

 		How to deploy LogIsland in an Hadoop cluster ?

 		How can I configure Kafka to avoid irrecoverable exceptions ?

 		How to purge a Kafka queue ?

_static/features.png
Collecte des

données

X

ENVOYER

Les données de log
sont envoyées
depuis les
Appliances ou
Proxy sur les
systemes de fichier
finux, par fip ou via
Tinstallation d'un
agent.

=

Traitements
big data

machine
learning

34
g
TRAITER

Les logs sont

pré-traités,
enrichis

indexés

étiquetés

agréges sur Hadoop

par un flux de collecte
temps réel avant detre

groupés par
empreinte réseau

par des procédures de
machine leaming

@

VISUALISER

ALERTER

RECHERCHER

]

ANALYSER

SUPERVISER

Les évenements sont visualisés
par des series temporelies.

Des alertes sont lancées lors de
Ia détection de patterns ou le
dépassement de seuils
prégéfinis

On peut rechercher des
‘événements partculiers via des
expressions réguliéres en
définissant des indicateurs

Les tableaux de bord de
oraphes et s clusters de
races permetent de
comprendre le comportement
de certaines machines (zoom,
click, drag)

I faut surveller Tétat de
Tinrasiructure (mémaire, cpu,
occupation disque)

_static/nifi-flow.png
& NiFi

& - C [© sandboxsosojnifi/

Rl z R

Apps M hurence M logisland B stage < Spark Streamin M questions/résur (] Mining Console |

o

[stage|Trello

£ 12:47:26 UTC

ListenUDP
Processor

32dbe663-015b-1000-1b17-415e850aab94
& x> E 3
@& o Woaee

@ Navigate E]

W ListenUDP
S =i

& operate E]

n 0(0bytes) 5
Read/Write 0 bytes /0 bytes 5
out 0(0bytes) 5
Tasks/Time 0/00:00:00.000 §

Name success

Queued 0 (0bytes)

W Putkafka

[S) =pa
n 0(0bytes)
Read/Write 0bytes /0
out 0(0bytes)

Tasks/Time 0/00:00:00.000

& Configure
» start

1aa Status History

L Data provenance

© Upstream connections
© Downstream connections
8 Usage

o Change color

© Centerin view

= PutFile
Putfile.

_images/kibana-configure-index-packet.png
<« C' | ® 127.00.1:5601/app/kibana#/settings/indices/?_g=(refreshinterval:(display:Off, pause:!f,value:0),time:(from:now-15m,mode:quick to:now)) amw 1 & A

Dashboard

Advanced Objects Status

Index Pattems.

[No defaultindex pattern. You must selector Configure an index pattern

create one to continue:
In order to use Kibana you must configure at least one index pattem. Index pattems are used to identify the Elasticsearch index to run search and analytics against. They are also used to configure fields

¥l Index contains time-based events

Use event times to create index names [DEPRECATED]
Index name or pattern
Pattems allow you to define dynamic index names using * as a wildcard. Example: logstash-*

peap’

Do not expand index pattern when searching (Not recommended)
By default, searches against any time-based index pattem that contains a wildcard will automatically be expanded to query only the indices that contain data within the currently selected time range
‘Searching against the index pattem logstash-* il actually query elasticsearch for the specific matching indices (e.g. logstash-2015.12.21) that fall within the current time range.

Time-field name @ refresh fields.

@timestamp

_static/kibana-logisland-import-dashboard.png
I settings-kibana [l dashboard_netfio. x _\

tab:dashboards)&_g=(refreshinterval:(display:'5%20seconds’paus a»\ B 9 &
8 questions/résur [} Mining Console =[] stage | Trello

< C) | ® sandbox:5601/app/kibanat/settings/objects?
Apps B hurence M logisland m stage < Spark Streaminc

Edit Saved Objects

From here you can delete saved objects, such as saved searches. You can also edit the raw data of saved objects. Typically objects are only modified via their

associated application, which is probably what you should use instead of this screen. Each tab is limited to 100 results. You can use the filter to find objects not in the

default fist.

Dashboards (1)~ Searches (1) Visualizations (14)

Dsean ([

@ dashboard netflow

showall | x

exportjson

_images/spark-streaming-packet-capture-job.png
¢ & C | ® 127001:4050/streaming/ aww 51 » A
Spoﬁ? o Jobs Stages Storage Environment Executors | Streaming parsePCapEventsDemo application Ul
Streaming Statistics
Running batches of 4 seconds for 7 minutes 42 seconds since 2017/04/26 19:42:01 (115 completed batches, 9004 records)
Timelines (Last 115 batches, 0 active, 115 completed) Histograms
records/sec 0 20 40 60 80 100 #baiches
100.00
80.00
» Input Rate 60.00
Avg: 19.57 records/sec 4000
20.00
0.00
19:42:08 19:49:44
sec 20 40 60 80 100 #baiches
s s s s
5.00
4.00
Scheduling Delay) 3.00
Avg: 26 ms 200
1.00
000 ———
19:42:08 19:49:44
sec 20 40 60 80 100 #baiches
s s s s
5.00
4.00
Processing Time (?) 3.00
Avg: 458 ms 200
1.00 -
0.00
19:42:08 19:49:44
sec 0 20 40 60 80 100 #baiches
o i o e
5.00
4.00
Total Delay (7 3.00
Avg: 484 ms 200
1.00 -
0,00
19:42:08 19:49:44
Active Batches (0)
Batch Time Input Size ‘Scheduling Delay (7 Processing Time (?) ‘Output Ops: Succeeded/Total Status.

Completed Batches (last 115 out of 115)

Batch Time Input Size ‘Scheduling Delay (7 Processing Time () Total Delay) Output Ops: Succeeded/Total

2017/04126 19:49:44. 16 records. 6ms 02s 02s [J—
2017/04126 19:49:40 18 records. 7ms 02s 02s [R
2017/04126 19:49:36 12 records. 2ms 02s 02s [J—
2017/04126 19:49:32 14 records. ams 02s 03s [R
2017/04/26 19:49:28 10 records. 1ms 03s 03s [J—
2017/04126 19:49:24 12 records. oms 03s 03s [R
2017/04126 19:49:20 16 records. 2ms 02s 02s [J—
2017/04126 19:49:16 16 records. 5ms 03s 03s [R
2017/04126 19:49:12 65 records 3ms 03s 03s [J—
2017/04/26 19:49:08 55 records 2ms 01s 01s [R
2017/04126 19:49:04 54 records 1ms 02s 02s [J—
2017/04/126 19:49:00 60 records 1ms 03s 03s [R
2017/04126 19:48:56 73 records 9ms 03s 03s [J—
2017/04126 19:48:52 75 records ams 03s 03s [R
2017/04126 19:48:48 164 records 3ms 04s 04s [J—

_static/kibana-blacklisted-host.png
® ©® /[querymatching - Streaming < x /|| Kibana

X ({8 elasticsearch-head e

X\

@

C | ® sandbox:5601/app/kibana?#/discover

isplay:Off,pause:!f,value:0),time:(from:'1995-06-29722:00:00.000Z'mod. a‘ Cew Ga$+0

alert_match_name: “blackiisted_host” JEV-CUNS

Visualize (1 warning A

alert_match_query
bytes_out
hitp.method Table Jso
itp_cpiery Gtinestanp
hitp_status, i
http,version index
identd

_score
record_ertors.

—type
record_id

alert_match_name
record_raw_value

alert_match_query
record_time

bytes_out
record_type

http_nethod
src_ip

http_query
user

hetp_status

http_version
identd
record_id

record_raw_value

record_time

record_type

13,233 hits

Selected Fields June 30th 1995, 00:00:00.000 - July Bth 1995, 00:00:00.000 — by 3 hours.
600 <
Available Fields n ¢ o
@timestamp 3
8
20
. I I ||“ ih |“ Lanllh..ult
o R | | | '] n Al n 1]]
199507010200 199507020200 199507030200 1995-07-040200 1995-07-050200 1995-07-060200 1995-07-07 0200
~score. ‘@timestamp per 3 hours
_type ~
alert_match_name T source
Quick Count @ (500 ~ July 7th 1995, 14:55:43.000 ajert match mame: blacklisted_host record type: [Connection_alert etimestamp: July 7th 1995, 14:55:43.000
blacklisted_host aq src_i

alert_match_query: $19p-5.10.Com bytes_out: 3,080 http method: GET http_query: /shuttle/missions/

sts-71/movies/movies.htm http_status: 200 http_version: HTTP/L.0 identd: - 741f7d16-e814-4c8
4-bled-22b871da541 record_raw_value: s1ip137-3.pt.uk.ibm.net - - [07/3u1/1995:08:55:43 -0400] GET /shuttl

e/missions/sts-71/movies/movies_htm] HTTP/1.0 200 3089

record_id:

S1p137-3.pt.0

805.121,743,000

09/connection_alert/avhnGhuhrafukoaTefcx

@ @ M July 7th 1995, 14:55:43.000
aam
o
o
o
aam
aam
aam
aam
aam
aam
aam
aam -
@ @ M 7d1f7d16-e814-4cB4-bled-22bf871da541

aam

AVhN6hHhr4 fukoA7EFcx

Togisland.2016.11.09

connection_alert

src_ip:slip-5.io.com

3,089
T
/shuttle/missions/sts-71/movies/movies. htnl
200

HTTP/1.0

$1ip137-3.pt.uk.ibm.net - - [07/3ul/1995:0
1.0 200 3089

5:43 -0400] GET /shuttle/missions/sts-71/movies/movies.html HTTP/

eaam
QQaD comectionatert

805,121,743,000

T — e ——————————————————————————————

_static/up.png

_static/nifi-drag-template.png
& NiFi

@

C O [® sandboxsoso/aifi/

Apps B hurence B logisland B stage <t Spark Streaming Bl questions/résur (I} Mining Console | [H stage | Trello

Rl z R
wo ‘= 0/0bytes @0 w0 »o m3 Ao o 2 12:40:55 UTC Q
@ Navigate E]
@a Ik a_
&y operate =]
NiFi Flow
b Process Group.
32d55107-015b-1000-26e8-0c3f58671bd1
& > =3

_images/kibana-logisland-metrics.png
® © ® /[indexapacheLogs - Streamin: x / [Discover - Kibana X ({8 elasticsearch-head % { A\ cat: output specific number o' X | e

<« C | ® sandbox:5601/appykibanat/discover?.

refreshinterval:(display:Off,pause:!f,value:0) time:(fror

ow-15m,mode:quick to:now))&a.

ar|Ce ¥ Ga$+0

p— e 0110517201 v 1, 13217291~
e
g ..

Gtmmsirn H

-) . l .

s .

= Comatare ot

- "

e —

. o
S —
‘average_bytes per_second. - November 10th 2016, 11:08:20.000 geimestamp: November 10th 2016, 11:08:20.000 average bytes per_field: 29 average bytes per record: 148 average bytes per s

P—— 4 average_elelds por _rocord: 5 average_nua _records_per_secosds 111 coaponent_sase: Vatchauery error_percestage: O imput topics: logis]
and_aggregations nus incoaing messages: 20 nus incoming records: 20 mus outgoing_records: 2 output_topics: logisland alerts record_idi ¢
60896 1abd-46d5-a7cc-d184cA80Fd32 xecord_time: 1,478,772,500,055 rocord_types logisland setrics spack spp mame: QueryMatching

‘component_name ! N)
i, apark pactition 14: 0 tople offsst froms 180 tople offsst untili 200 total bytes: 295 total leldss 10 total processing tine in mer 1
input topics ot | s ik o /loqis1and. 2016.11.09/Toais1and necri s /AvhexykefukonTavx
numincoming messages.
num_incomig records etinestamp @Q 0 November 10th 2016, 11:08:20.000
um_outgoing records @Q @ AvhwoykesfukoaTARX
topics) Togisland.2016.12.09
rcord erors _score o
R type D Togistand_netrics
(e average bytes_per_field aam»
(D average bytes_per._record aam 1
racord type
s average bytes_per_second @am 16444
R average_fields per_record @ QM 5
o average nus_records_per_second @ @ @ 111
topi.ofsetuntl conponent._nane @ QM wachaery
tctaLyien error_percentage @amo
totailds input_topics @ Q[logisland_aggresations
totl_processing.time in.ms. nun_incoming_nessages aam o
nun_incoming_records aam
nun_outgoing_records aam?
output_topics @Qm logistland aterss
record_id @Q 0 4cadbs9s-1abd-46d5-a7ce-d18dcan0fe32
record_tine @am 1,478,772,500,055

@Q @ logisland_netrics

@Q [auerymatching

aamo
topic_offser_fron aam o
topic_offser_until aam o
ol byes aam s
total_fields aam w0

total_processing_timeinns @ Q@ 18

_images/kibana-logisland-dashboard.png
/ Wl dashboard_netflo. x \{__\

& © C 0 | ® sandbox:5601/app/kibanatt/dashboard/dashboard_netFlow?_g=(refreshinterval(display:’5%20seconds’ pause:f section:1 value:5000) time:(From:2017-04-05T12:12:13.317Z mode:absoluteto:2017-04-05T1 @ % | H & B
Apps B hurence M logisland Wm stage <Y Spark Streaminc M questions/résur [} Mining Console | [I stage | Trello
ot e of Neow vent ,x Incorin ven e rtcl ’x
= ot Descendig - Q0 Count B
181,379 ;
9 . soess
= = >
Tops s Tops =i Nomber of Pckesper s prt (09 20 ,x
Top st port ’x Top 5t ,x NomberofPckes pr st port 1020 ,x
- () E IIIIII IIIIIIIIIII
Incomin flow pr P o 5) ,x
o e
incomin fon ,x

_images/kibana-apache-logs.png
® © ® /[y indexapacheLogs - Streamin: x / [Discover - Kibana X ({8 elasticsearch-head x { /) cat: output specific number o' x |\ e

Y

¢ — C @ sandbox:5601/app/kibanat/discover? ¢

refreshinterval:(display:Off,pause:!fyalue:0) time:(from:'1995-06-29T22:00:00.000Z,mo.. A % | [€ @ % @& ¥ + O

CAutorirosh @) June 30t 1995, 0000:00.000 o Jul 8 1995, 0000:00.000.

e o e
e J msaron [|

E - o e

o o e Wt T 7 S e T e

[-

B - |

W mom s a e e

. LRIy

-

‘Seacted ks une 3001995, 0D0D0.000 -l 8 1995, 0000000 — by s
o0 <
Avalabe Fiids o
- = I I II I I II
i
K 5000
= . Lualllllaallllial (TR T Ll
e @timestamp per 3 hours
e .
e
Time _sourcs
it mathod
e > Wy 7th 1995, 14:55:52.000 getmestamps July 7th 1995, 14:55:52.000 Bytes_osts 7,067 Betp sethods GET betp_querys /ksc.hesl Betp statuss 200 besp versions HTTP/L.0
. Ldoatds - xecomd_ids 9afa42f5-0bBE-sesd-b3bS-F2dchaBIBab2 record _cew_valve: 130.103.8.217 - - [07/241/1995:08:55:52 -0400) Ger /ksc.he) w7
. vrsion P/1.0/200 7067 cocord_tines 805,121,752,000 secord_types spache_log sxc_ips 130.103.48.217 wsers - _ids AVBNvsnr4fukONTASIO _types apache_
» log _sadex: logisland 2016.11.09 _score:
) 0g og E
ecors s
> uly 7th 1995, 14i55552.000 getmestampr July 7eh 1995, 16:55:52.000 bytes_outs 5,866 heep methods GET heep querys /inages/ksclogo-sedium.gif hetp_statuss 200
acor ra v
= Bttp version: WITP/LO identds - record id: 36hG982-F533-40fb-b106-03FEChS22909 xecord ca_values spider.the.com - - (07/3u1/1995:08:55:52 -
T 0400) GeT /inages/ksclogo-ediun. 1 HTTP/1.0 200 5366 secord_times 805,121,752,000 record_trpes apache_log src_ips spider.the.con useri -
ecord type 41 AVANEVSQrAFUKOATATKE _trpes apache_Tog _tadexs logisland.2016.11.09 _seores
sreip
user » Wy 7th 1955, 14:55:51.000 getmestamps July 7h 1995, 14:55:51.000 Bytes_outs 3,047 betp methods GET besp_querys /history/apollo/inages/apollo-Togo.gif betp_statuss 20

© hetp_verstons WITP/LO ideneds - record.

© 1c753eda-beea-4773-9bfb-a5369be73441 record_rew_valua: ad03-025. conpuserve.con - - [07/1/199
5:08:55:51 -0400) GeT /history/apollo/inages/apollo-Togo.gi HTTP/1.0 200 3047 record_tise: 805,121,751,000 secord_types apache_log sre_ips ad

03:025.conpuserve.con waers - _{ds AVANEVSQréfukOATATKS _type: apache_log isdess logisland.2016.11.09 _scorer

> 3uly 7th 1985, 14:55i50.000 getmestamps July 7th 1995, 14:55:50.000 byses outs 7,067 heep methods GET hetp querys /ksc.himl heep statuss 200 heep version: WITP/LO

identar - racora La: 496B07S-3b1-46fb-930b-78ee604SSF18 record_rau_value: spider. the.con - - (07/3u1/1995:08:55:50 0400) GET /ksc.hex] HIT
P/1.0 200 7067 rocord_tine: 805,121,750,000 record type: apachelog scc_ips spider.the.com wsers - _ids AVANIngrfukORTAWFH _type: apache_
Tog _tadex: logis1and.2016.11.09 _score:

> 3uly 7th 1985, 14:55:49.000 geimestamps July 7th 1995, 14:55:49.000 byses_outs 40,310 heep methods GET hewp querys /shutle/countdown/count.gif heep_statuss 200
http veraion: HTTP/1.0 dsmtds - record ids ccfacdB0-1162-4F0c-99ef-d31F6S93728 record_raw_valus: gate.chips.ibm.con - - [07/3u1/1995:08:55:
49 -0400] GT /shuttle/countdown/count..giF HTTP/1.0 200 40310 record_tines B05,121,749,000 record type: apachelog see_ips gate.chips. ibm.con
users - _id: AVNGOIZr4fUkOATAYGQ _type: apache log _index: logisland.2016.11.09 _score:

_static/nifi-template-dialog.png
<
Apps B hurence B logisland Bu stage

spark Streaminc [questions/résur

Upload Template

Select Template Q.

nifi_netflow.xml

CANCEL

{0 Mining Console

[stage | Trello

_images/data-driven-computing.png
Log Parser/

System Monitoring/
b """ Actions

Anomaly Fault Problem
Detection Diagnosis Determination

I
! ==
Real Time Management I [oy
_____________________ I Correlation/Dependency
Knowledge

torical Knowledge Management
E"‘ Collection | == i

N — T
- [EOtfine Analysiss S=Ses S S |

_images/kafka-mgr.png
+ Brokers

Host

sandbox

9092

JMX Port

10101

Bytes In

Bytes Out

Combined Metrics

Rate
Messages in /sec

Bytes in /sec

Bytes out /sec

Bytes rejected /sec
Failed fetch request /sec

Failed produce request /sec

eeo00He
66666
86600

1min

5min

15 min

666008

_static/ajax-loader.gif

_images/nifi-flow.png
& NiFi

& - C [© sandboxsosojnifi/

Rl z R

Apps M hurence M logisland B stage < Spark Streamin M questions/résur (] Mining Console |

o

[stage|Trello

£ 12:47:26 UTC

ListenUDP
Processor

32dbe663-015b-1000-1b17-415e850aab94
& x> E 3
@& o Woaee

@ Navigate E]

W ListenUDP
S =i

& operate E]

n 0(0bytes) 5
Read/Write 0 bytes /0 bytes 5
out 0(0bytes) 5
Tasks/Time 0/00:00:00.000 §

Name success

Queued 0 (0bytes)

W Putkafka

[S) =pa
n 0(0bytes)
Read/Write 0bytes /0
out 0(0bytes)

Tasks/Time 0/00:00:00.000

& Configure
» start

1aa Status History

L Data provenance

© Upstream connections
© Downstream connections
8 Usage

o Change color

© Centerin view

= PutFile
Putfile.

_images/kibana-logisland-metrics-netflow.png
M Discover - kibana

x

Apache Spot (Incul x

e) e

& © C {0 | ® sandbox:5601/app/kibanat/discover?

(columns:(_source) index‘netFlow. intervalauto,query:(query stringan ¥ | Fd ® Bk

Selected Fields

Avilale Fieds [y
@timestamp
d
_index.
_type
doctets
dpkts
dstas
dst_host
dst_ mask
dstaddr
dstport
duration
frst
input
last

nexthop

Count

1000
s00
00
400
20

Apps B hurence M logisland Bm stage < Spark Streaminc [questions/résur (] Mining Console [T stage | Trello

39,726 hits

Aprl 7th 2017, 14:57:05.372 - April 7th 2017, 15:57:05.372 — by minute

i

1500 1505 1310 1515 1520 1525 1530 1535 1540 1545 1550 1535

Time.

@timestamp per minute
~

April 7th 2017, 15:56:54.000 gtimestanp: April 7th 2017, 15:56:54.000 dictets: 26,058,258 dPkts: 99,459

April 7th 2017, 15:5¢

dst_as: 0 dst_mask: 0 dstaddr: 192.168.1.101 dstport: 57,131
duration: 7,000 first: 2,732,000 input: 0 last: 2,739,000 nexthop: 0.0.
blfded42-d991-4edc-85ad-dco6T16133ac

0.0 output: 0 prot: 6 record id:

@timestamp: April 7th 2017, 15:56:54.000 doctets: 12,213,495 dPkts: 63,045
dst_as: 0 dst_host: localhost dst mask: 0 dstaddr: 127.0.0.1 dstport: 4
2,506 duration: © first: 2,720,000 input: © last: 2,720,000 nexthop: 0.
0.0.0 output: 0 prot: 6 record id: 4b54cabb-38c1-41c1-9cdf-bdadeb7ca7bf

_static/data-to-knowldege.png
nter-ccnrected

A

knowledge

information

inked

information

stnuctures

datc

.-.
NCIE
. B .
G
L] ® 53

s <N
e

o rue
R
-
-00-

* nue
m

Ahe 8 L
m_m " w i

_static/down.png

_images/kibana-logisland-import-dashboard.png
I settings-kibana [l dashboard_netfio. x _\

tab:dashboards)&_g=(refreshinterval:(display:'5%20seconds’paus a»\ B 9 &
8 questions/résur [} Mining Console =[] stage | Trello

< C) | ® sandbox:5601/app/kibanat/settings/objects?
Apps B hurence M logisland m stage < Spark Streaminc

Edit Saved Objects

From here you can delete saved objects, such as saved searches. You can also edit the raw data of saved objects. Typically objects are only modified via their

associated application, which is probably what you should use instead of this screen. Each tab is limited to 100 results. You can use the filter to find objects not in the

default fist.

Dashboards (1)~ Searches (1) Visualizations (14)

Dsean ([

@ dashboard netflow

showall | x

exportjson

_static/kibana-configure-index.png
e

©® O ® /[indexapacheLogs - Streamine x / [1] Settings - Kibana X ({8 elasticsearch-head % /) cat: output specific number o' x |\
:Off, pause:tfvalue:0) time:(from:now-15m, mode:quick to:now)) tEew Qo $+0

' RegEx Quick Refere... @ Improved Fault-tole... & NiFi [Partitions and Parti.. [} Kafka Consumer Of... #) Ambari - hurence [} Yar - hurence & ES - hurence »

€ C | ® sandbox:5601/appkibana#/settings/indices/?.

3 Pragmatic Program... Iy Getting started wit..

Apps [E] USI) Lambda-Acch.

kibana ~ --

Indices Advanced Objects Status About

Index Patterns

e Gonfigure an index pattern

In order to use Kibana you must configure at least one index pattern. Index patterns are used to identify the Elasticsearch index to run search and analytics against. They are also used to configure fields.

index contains time-based events
7] Use event times to create index names [DEPRECATED]

Index name or pattern
Patterns allow you to define dynamic index names using * as a wildcard. Exampl

logisland.{

Do not expand index pattern when searching (Not recommended)
By default, searches against any time-based index pattern that contains a wildcard will automatically be expanded to query only the indices that contain data within the currently selected time range.
Searching against the index pattern logstash-* will actually query elasticsearch for the specific matching indices (e.g. logstash-2015.12.21) that fall within the current time range.

Time-field name @ refresh fields

@timestamp

_images/kibana-blacklisted-host.png
® ©® /[querymatching - Streaming < x /|| Kibana

X ({8 elasticsearch-head e

X\

@

C | ® sandbox:5601/app/kibana?#/discover

isplay:Off,pause:!f,value:0),time:(from:'1995-06-29722:00:00.000Z'mod. a‘ Cew Ga$+0

alert_match_name: “blackiisted_host” JEV-CUNS

Visualize (1 warning A

alert_match_query
bytes_out
hitp.method Table Jso
itp_cpiery Gtinestanp
hitp_status, i
http,version index
identd

_score
record_ertors.

—type
record_id

alert_match_name
record_raw_value

alert_match_query
record_time

bytes_out
record_type

http_nethod
src_ip

http_query
user

hetp_status

http_version
identd
record_id

record_raw_value

record_time

record_type

13,233 hits

Selected Fields June 30th 1995, 00:00:00.000 - July Bth 1995, 00:00:00.000 — by 3 hours.
600 <
Available Fields n ¢ o
@timestamp 3
8
20
. I I ||“ ih |“ Lanllh..ult
o R | | | '] n Al n 1]]
199507010200 199507020200 199507030200 1995-07-040200 1995-07-050200 1995-07-060200 1995-07-07 0200
~score. ‘@timestamp per 3 hours
_type ~
alert_match_name T source
Quick Count @ (500 ~ July 7th 1995, 14:55:43.000 ajert match mame: blacklisted_host record type: [Connection_alert etimestamp: July 7th 1995, 14:55:43.000
blacklisted_host aq src_i

alert_match_query: $19p-5.10.Com bytes_out: 3,080 http method: GET http_query: /shuttle/missions/

sts-71/movies/movies.htm http_status: 200 http_version: HTTP/L.0 identd: - 741f7d16-e814-4c8
4-bled-22b871da541 record_raw_value: s1ip137-3.pt.uk.ibm.net - - [07/3u1/1995:08:55:43 -0400] GET /shuttl

e/missions/sts-71/movies/movies_htm] HTTP/1.0 200 3089

record_id:

S1p137-3.pt.0

805.121,743,000

09/connection_alert/avhnGhuhrafukoaTefcx

@ @ M July 7th 1995, 14:55:43.000
aam
o
o
o
aam
aam
aam
aam
aam
aam
aam
aam -
@ @ M 7d1f7d16-e814-4cB4-bled-22bf871da541

aam

AVhN6hHhr4 fukoA7EFcx

Togisland.2016.11.09

connection_alert

src_ip:slip-5.io.com

3,089
T
/shuttle/missions/sts-71/movies/movies. htnl
200

HTTP/1.0

$1ip137-3.pt.uk.ibm.net - - [07/3ul/1995:0
1.0 200 3089

5:43 -0400] GET /shuttle/missions/sts-71/movies/movies.html HTTP/

eaam
QQaD comectionatert

805,121,743,000

T — e ——————————————————————————————

_static/kibana-connection-alerts.png
® O ® /1y quenyMatching - Streaming < x) []] Kibana x ({5 elesticsearch-head x { Whatanalyzer should 1use fo x e

refreshinterval: fvalue:0) time: (from:'1995-06-29T22:00:00.000Z'mod... % | [€ @ % & & + O

isplay:Off, pause

€& C | ® sandbox:5601/app/kibana?#/discover

kibana ~ = == = U —
record_type:connectic lert 5 0 5 o

Selected Fields June 30th 1995, 00:00:00.000 - July Bth 1995, 00:00:00.000 — by 3 hours.
<
3000
Available Fields
a £ 200
@timesiamp H
8
. - I IIIII I III I IIII I
. TR PR TR T R L
1995.07.010200 19507020200 199507030200 1995-07-040200 199507050200 1995-07-060200 19950707 0200
~score. ‘@timestamp per 3 hours
type -~
st match_name . ource
Quick Count @ (500 > July 7th 1995, 06:31:54.000 record type: \connection_alert etimestamp: July 7th 1995, 06:31:54.000 alert match mame: blacklisted_host
‘edu_host aa alert_match_query: Src_ip:slip-5.i0.com bytes_out: 49,152 http method: GET http_query: /shuttle/mission
) §/5ts-T1/movies/sts-71-hatch-open.mpg eep_statuss 200 hekp_versions WTTP/L.0 identds - record_ids asi7?
blackisted_host aa) i
= 07-4337-4cfe-ac7a-356216B8cf3e rocord_raw_value: s1ipé2.van2.pacifier.con - - [07/3u1/1995:00:31:54 ~0400]
GET /shuttle/missions /sts-71/movies /sts-71-hatch-onen.mpa HTTP/1.0 200 49152 record tims: 805.091,514,000
Visuaize (1 warning 4)
alert_ match_query > July 7th 1995, 06:31:52.000 record_type: Connection_alert etimestamp: July 7th 1995, 06: 2.000 alert match name: blacklisted_host
bytes_out alert_match query: Src_ip:slip-5.i0.com bytes_out: 40,310 http method: GET http_query: /shuttle/countdow
http_method n/count.gif nttp status: 200 http version: HTTP/1.0 identd: - record_id: Oedcbd53-1118-dcde-aedd-5df2899
i 60972 record_raw_value: s1ipé2.van2.pacifier.com - - [07/3u1/1995:00:31:52 -0400] GET /shuttle/countdown/co
- unt.gif HTTP/1.0 200 40310 record time: 805,091,512,000 sre ip: s1ipd2.van2.pacifier.com user: 1a: Av
hitp_status
hitp_version > 3uly 7th 1995, 06:30:27.000 recora_type: COMMECEiON_AlErt etimestamp: July 7th 1995, 06:30:27.000 alert_match mame: edu_host
identd alert_match_query: src_ipiedu bytes out: 1,932 http method: GET http query: /shuttle/resources/orbiters/
e orbiters-logo.gif http status: 200 http version: WTTP/L.0 identd: - record id: ffc876bb-9b3f-43a4-9laz-e
) 8764el31bab record raw_value: legt-143.dorms.tamu.edu - - [07/Ju1/1995:00:30:27 -0400] GET /shuttle/resourc

es/orbiters/orbiters-1000.qif HTTP/1.0 200 1032 record time: 805.001,427.000 sre ip: leqt-143.dorms.tamu.e
record_raw_value

record_time. > 2uly 7th 1995, 06:30:16.000 record type: \conmectionalert etimestamp: July 7th 1995, 06:
alert_match_query: src_ip:s1ip-5.10.com bytes_out: 66,554 http method: GET http query: /shuttle/countdow

6.000 alert match_name: blacklisted_host

record_type.
@ n/video/livevideo2.gif http_status: 200 http_version: HTTP/1.0 identd: - record id: f5f7455f-8b8f-44c8-8

B e43-flc024e70cca record_raw_value: s1ip239.rig.qc.ca - - [07/3u1/1995:00:30:16 -0400] GET /shuttle/countdow
user

n/video/1ivevideo2.aif HTTP/1.0 200 66554 record time: 805,091,416,000 sre ip: s19p239.ria.oc.ca users

> July 7th 1995, 06:30:12.000 record type: \CONMECtion_alert etimestamp: July 7th 1995, 06:30:12.000 alert match mame: edu_host
alort_match_query: Src_ipiedu bytes out: 28,426 http method: GET http query: /images/mlp-logo.gif
http_status: 200 http_version: HTTP/1.0 identd: - record_id: 83306869-a774-4b09-8e40-bBe20347ccob
record_raw_value: legt-143.dorms.tamu.edu - - [07/3u1/1995:00:30:12 -0400] GET /images/mlp-logo.gif WTTP/1.

0 200 28426 record time: B05.001,412,000 sre ip: leqt-143.dorms.tamu.edu user: a0 AVRNGFIzrAfukoa7EZ

T———— el sttt bttt ittt ittt ettt

_images/kibana-save-search.png
/ M Discover - Kibana

Selected Fields

@timestamp
d

_index
_type
doctets
dpkts
dstas
dst_host

dstioa

Available Fields. (o]

x \ G curlelasticsearch ¢ x) Index templatenc' x \ 2 elasticsearch-Hov x Y & database-Elastics

x \

Count

‘April 11th 2017,09:52:09.529 - Aprl 12th 2017, 09:52:09.529 — by 30 minutes

2500
2000
1500
1000
500
o
1100 1400 1700 2000 200 0200
@timestamp per 30 minutes
~
Time. _source:

27.000 doctets: 3,363,716

April 1ith 2017, 18:06:27.008 gtimestamp: April 11th 2017, 18

<« C) | ® sandbox:5601/app/kibanat/discover?_g=(filters:(),refreshinterval:(display:’5%20seconds’ pause:1F.section:1value:5000) time @ v | A ® B
Apps B hurence M logisland Wm stage <Y Spark Streaminc M questions/résur [} Mining Console | [I stage | Trello

o500

dPkts: 11,599 dst e

2,582 hits

o800

dst_ipd: 192.168.1.102 dst_mask: © dst_port: 35,002 duration: 54,000 first: 121,000 flags: 2
22 dmput: © last: 175,000 nexthop: ©.0.0.0 nmprot: 6 output: © record id: 632cedaa-8d4s-4dfi-

_static/logisland-workflow.png
3.
records are

indexed to search
engine while they
appear

¢34 elastic

2.
raw messages
are converted
to structured
records

3.
records are
dumped
periodically to
Hadoop

1.
raw messages
are sent to
Kafka topics for
processing

3.
records are
processed to
extract patterns
or alerts

4,
records are
processed in batch

to build analytics
models

raw messages &
structured records
are both stored in
Kafka topics to be
processed in parallel

analyst

_images/nifi-drag-template.png
& NiFi

@

C O [® sandboxsoso/aifi/

Apps B hurence B logisland B stage <t Spark Streaming Bl questions/résur (I} Mining Console | [H stage | Trello

Rl z R
wo ‘= 0/0bytes @0 w0 »o m3 Ao o 2 12:40:55 UTC Q
@ Navigate E]
@a Ik a_
&y operate =]
NiFi Flow
b Process Group.
32d55107-015b-1000-26e8-0c3f58671bd1
& > =3

_static/es-head.png
000 <

[in]

Elasticsearch

Overview | Indices

Browser

Alndices
Tnocss

ibana
li-apache-2016.02.04
Tvees
default
apache.

config

Frzios

» @timestamp
» buiidNum

» bytessent

D bytessent

» date

» error

P host.

P referer

P request.

P source

P status

» tags

» user

» useragent

Browser

hitor/jsandbox:9200/

Structured Query [+]

@

sandbox

Connect | elasticsearch cluster health: yellow (4 of 5)

Any Request [+]

Searched 4 of 4 shards. 464671 hits. 0.051 seconds

date
1995-07-01T14:39:06.0002
1995-07-01T14:39,
1995-07-01T14:39::
1995-07-01T14:39:
1995-07-01T14:39:
1995-07-01T14:39,
1995-07-01T14:39:
1995-07-01T14:39:
1995-07-01T14:39:
1995-07-01T14:39,
1995-07-01T14:39:
1995-07-01T14:39:
1995-07-01T14:39:!
1995-07-01T14:39,
1995-07-01T14:39:!
1995-07-01T14:39:
1995-07-01T14:40:03.0002
1995-07-01T14:40:03.0002
1995-07-01T14:40:11.0002
1995-07-01T14:40:12.0002
1995-07-01T14:40:17.0002
1995-07-01T14:40:17.0002
1995-07-01T14:40:20.0002
1995-07-01T14:40:24.0002
1995-07-01T14:40:29.0002
1995-07-01T14:40:34.0002
1995-07-01T14:40:42.0002
1995-07-01T14:40:42.0002
1995-07-01T14:40:42.0002
1995-07-01T14:40:47.0002
1995-07-01T14:40:50.0002
1995-07-01T14:40:53.0002
1995-07-01T14:40:57.0002
1995-07-01T14:40;
1995-07-01T14:41:
1995-07-01T14:41:
1995-07-01T14:41:
1995-07-01T14:41;
1995-07-01T14:41:
1995-07-01T14:41:
1995-07-01T14:41:10.0002

request
GET / HTTP/1.0

GET /images/WORLD-logosmall.gif HTTP/1.0

‘GET /images/USA-logosmall.gif HTTP/1.0

GET /shuttle/countdown/liftoff.html HTTP/1.0

‘GET /software/winvn/faq/WINVNFAQ-Contents.html HTTP/1.0

GET /images/USA-logosmall.gif HTTP/1.0

GET /history/apolio/apolio-17/apolio-17.html HTTP/1.0

GET /shuttle/missions/sts-71/sts-71-day-04-highlights.html HTTP/1.0
‘GET /shuttle/countdown/liftoff.html HTTP/1.0

GET /images/WORLD-logosmall.gif HTTP/1.0

GET /images/launchmedium.gif HTTP/1.0

GET /shuttle/missions/sts-71/sts-71-patch-small.gif HTTP/1.0

‘GET /shuttle/technology/sts-newsref/sts_overview.html HTTP/1.0
GET /shuttle/countdown/ HTTP/1.0

‘GET /images/USA-logosmall.gif HTTP/1.0

GET /images/dual-pad.gif HTTP/1.0

‘GET /shuttle/countdown/video/livevideo.gif HTTP/1.0

GET / HTTP/1.0

GET /shuttle/missions/sts-71/images/KSC-95EC-0911.jpg HTTP/1.0
GET /shuttle/missions/sts-71/images/KSC-95EC-0913.gif HTTP/1.0
‘GET /shuttle/countdown/video/livevideo.gif HTTP/1.0

GET /images/USA-logosmall.gif HTTP/1.0

GET /history/apolo/apolio-8/apollo-8-patch-small.gif HTTP/1.0
GET /shuttle/countdown/ HTTP/1.0

GET /shuttle/technology/sts-newsref/stsref-toc. html HTTP/1.0
GET /history/apollo/images/footprint-small.gif HTTP/1.0

GET /images/launch-logo.gif HTTP/1.0

GET /images/KSC-logosmall.gif HTTP/1.0

GET /history/apolio/apollo-spacecraft.txt HTTP/1.0

GET /software/winvn/faq/WINVNFAQ-V-3.html HTTP/1.0

GET /shuttle/missions/sts-71/movies/sts-71-mir-dock.mpg HTTP/1.0
‘GET /shuttle/missions/sts-74/mission-sts-74.html HTTP/1.0

GET /shuttle/missions/sts-71/images/images.html HTTP/1.0

‘GET /shuttle/missions/sts-66/mission-sts-66.html HTTP/1.0

GET /shuttle/missions/missions.html HTTP/1.0

GET /cgi-bin/imagemap/countdown?101,174 HTTP/1.0

GET /shuttle/missions/sts-69/sts-69-patch-small.gif HTTP/1.0

GET /history/ HTTP/1.0

‘GET /shuttle/countdown/liftoff.html HTTP/1.0

GET /images/NASA-logosmall.gif HTTP/1.0

GET /shuttle/countdown/countdown.html HTTP/1.0

@timestamp

1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:
1995-07-01T14:

39:
39
39:
39:
39:
39
39:
39:
39:
39
39:
39:
39:
39
39:
39:
40:
40
40:11.0002
40:
40:17.0002
40:17.0002
40:20.0002
40:24.0002
40:29.0002
40:34.0002
40:42.0002
40:42.0002
40:42.0002
40:47.0002
40:50.0002
40:53.0002
40:57.0002
40
a1
a1
a1
a1,
a1
a1
41:10.0002

host
‘WWw-b6.proxy.ol.com
131.9252.11
131.9252.11
ix-phi3-15.
buffnets.buffnet.net
slip168-193.5y.au.lbm.net
solb.sc.ic.ac.uk
PppO-132.metropolis.nl
sladi1p2s.ozemail.com.au
slip168-193.5y.au.lbm.net
dd12-018.compuserve.com
slip-25-2.0ts.utexas.edu
t51-77.slip.uwo.ca
2d14-009.compuserve.com
134.209.40.202

netcom.com

ix-nbw-nj1-22.ix.netcom.com
netblazer1-s15.telalink.net
ads1-ts1.adsnet.com

vulean. cec.cranfield.ac.uk
ix-nbw-nj1-22.ix.netcom.com
131.182.28.171
ari23.jones.edu
slip168-193.sy.au.lbm.net
eic73.fiu.edu
slip168-193.sy.au.lbm.net
slip168-193.5y.au.lbm.net
eic73.fiu.edu
buffnets.buffnet.net
pm1-10.america.net
194.64.27.238
p58.euronet.nl
slip137-14.pt.uk.ibm. net
dd12-007.compuserve.com
slip-25-2.0ts.utexas.edu
dd12-018.compuserve.com
Pc71152.dialup.rwth-aachen.de
193.246.47.75
houston.clark.net
194.65.6.194

source
Www-b6.proxy.aol.com - - [0
131.92.52.11 - - [01/3ul/199
131.92.52.11 - - [01/3ul/199
ix-phi3-15.ix.netcom.com - -
buffnets. buffnet.net - - [01/J
slip168-193.5y.2u.ibm.net - -
solb.sc.ic.ac.uk - - [01/3ul/15
PPPO-132.metropolis.nl - - [C
sladi1p25.0zemail.com.au - -
slip168-193.5y.2u.ibm.net - -
dd12-018.compuserve.com -
slip-25-2.0ts.utexas.edu - - [
t51-77.slip.uwo.ca - - [01/ul
ad14-009.compuserve.com -
134.209.40.202 - - [01/3ul/1
eic73.fiu.edu - - [01/ul/199¢
ix-phi3-15.ix.netcom.com - -
ix-nbw-nj1-22.ix.netcom.com
netblazer1-s15.telalink.net -
ads1-ts1.adsnet.com - - [01/,
vulcan.cce.cranfield.ac.uk - -
ix-nbw-nj1-22.ix.netcom.com
131.182.28.171 - - [01/3ul/1
arl23 jones.edu - - [01/3ul/1¢
slip168-193.5y.au.ibm.net - -
eic73.fiu.edu - - [01/ul/199¢
slip168-193.5y.au.ibm.net - -
slip168-193.5y.2u.ibm.net - -
eic73.fiu.edu - - [01/ul/199¢
buffnets. buffnet.net - - [01/J
pmi1-10.america.net - - [01/2
194.64.27.238 - - [01/Jul/19
pS8.euronet.nl - - [01/Jul/19
slip137-14.pt.uk.ibm.net
dd12-007.compuserve.com -
slip-25-2.ots. utexas.edu -
dd12-018.compuserve.com -
Pc71152.dialup.rwth-aachen.
193.246.47.75 - - [01/Jul/19
houston.clark.net - - [03/Jul/
194.65.6.194 - - [01/3ul/199
195

_images/logisland-workflow.png
3.
records are

indexed to search
engine while they
appear

¢34 elastic

2.
raw messages
are converted
to structured
records

3.
records are
dumped
periodically to
Hadoop

1.
raw messages
are sent to
Kafka topics for
processing

3.
records are
processed to
extract patterns
or alerts

4,
records are
processed in batch

to build analytics
models

raw messages &
structured records
are both stored in
Kafka topics to be
processed in parallel

analyst

_images/kibana-configure-index.png
e

©® O ® /[indexapacheLogs - Streamine x / [1] Settings - Kibana X ({8 elasticsearch-head % /) cat: output specific number o' x |\
:Off, pause:tfvalue:0) time:(from:now-15m, mode:quick to:now)) tEew Qo $+0

' RegEx Quick Refere... @ Improved Fault-tole... & NiFi [Partitions and Parti.. [} Kafka Consumer Of... #) Ambari - hurence [} Yar - hurence & ES - hurence »

€ C | ® sandbox:5601/appkibana#/settings/indices/?.

3 Pragmatic Program... Iy Getting started wit..

Apps [E] USI) Lambda-Acch.

kibana ~ --

Indices Advanced Objects Status About

Index Patterns

e Gonfigure an index pattern

In order to use Kibana you must configure at least one index pattern. Index patterns are used to identify the Elasticsearch index to run search and analytics against. They are also used to configure fields.

index contains time-based events
7] Use event times to create index names [DEPRECATED]

Index name or pattern
Patterns allow you to define dynamic index names using * as a wildcard. Exampl

logisland.{

Do not expand index pattern when searching (Not recommended)
By default, searches against any time-based index pattern that contains a wildcard will automatically be expanded to query only the indices that contain data within the currently selected time range.
Searching against the index pattern logstash-* will actually query elasticsearch for the specific matching indices (e.g. logstash-2015.12.21) that fall within the current time range.

Time-field name @ refresh fields

@timestamp

_images/nifi-template-dialog.png
<
Apps B hurence B logisland Bu stage

spark Streaminc [questions/résur

Upload Template

Select Template Q.

nifi_netflow.xml

CANCEL

{0 Mining Console

[stage | Trello

_images/kibana-threshold-alerts.png
©® O ® /[queryMatching - Streaming & x / []] Kibana X ({8 elasticsearch-head

refreshinterval:

isplay:Off, pause

€& C | ® sandbox:5601/app/kibana?#/discover

kibana ~ = == = U —
record_type:threshold_alert 5 0 5 o

fvalue:0) time: (from:'1995-06-29T22:00:00.000Z'mod... % | [€ @ % & & + O

p—— e 50050704y 5500005080 iz
L <
. ;
Available Fields
a..
J—— 3
i
. ‘ [1 1 I, |
e .
Jcom ‘@timestamp per 3 hours
type ~
s e - e
Quick Count @ (13 v July 6th 1995, 00:24:30.000 record type: ‘threshold_alert etimestamp: July 6th 1995, 00:24:30.000 alert match mame: too_many_connecti
to0_many_connections eq ons alert_match_guery: connections_count:([500 TO 1000000] avg_bytes_out: 20,773.002 conmections_count: 60

G) 4 rocord_id: beSZOS0-0325-452C-0506-50CO2362402 record_tine: 804,983,070,000 sre_ip: pinebady.prodigy.
Visualize (1 warning &) om _id: AVANGfgOr4fukOAZEYT_ _type: threshold_alert _index: logisland.2016.11.09 _score:

alert_match_query

avg_bytes_out Link to /logisland.2016.11.09/threshold_alert/AVhN6fq0r4fukoATEvT.
- Table Isow

‘connections_count

) atimestamp @ @ m July 6th 1995, 00:24:30.000
gD _id @ @ D AVANGFgOr4fukoaZEvT_
D _index @ logisland.2016.11.09
src_ip _score o

—type @ threshold_alert

alert_match_name @ Q (D too_many_connections
alert_match_query @ @ [connections_count:[500 To 1000000]
avgbytesout @ @ D 20,773.002

connections_count @ @ @ 604

record_id @ @ M bde92060-d325-492-9506-5dc92362402b.
record_time @ @ m 804,983,070,000

record_type @ Q@ [[threshold_alert

srcip @ @ M piwebaly.prodigy.con

» July 6th 1995, 00:13:45.000

€0597747-3Ff2-4ef0-0609-3e50ee46ac0a record_time: 804,982,425,000 src_ip: news.ti.com
_id: AVANGTQOr4fukOA7EYUA _type: threshold_alert _index: logisland.2016.11.09 _score:

_static/kibana-threshold-alerts.png
©® O ® /[queryMatching - Streaming & x / []] Kibana X ({8 elasticsearch-head

refreshinterval:

isplay:Off, pause

€& C | ® sandbox:5601/app/kibana?#/discover

kibana ~ = == = U —
record_type:threshold_alert 5 0 5 o

fvalue:0) time: (from:'1995-06-29T22:00:00.000Z'mod... % | [€ @ % & & + O

p—— e 50050704y 5500005080 iz
L <
. ;
Available Fields
a..
J—— 3
i
. ‘ [1 1 I, |
e .
Jcom ‘@timestamp per 3 hours
type ~
s e - e
Quick Count @ (13 v July 6th 1995, 00:24:30.000 record type: ‘threshold_alert etimestamp: July 6th 1995, 00:24:30.000 alert match mame: too_many_connecti
to0_many_connections eq ons alert_match_guery: connections_count:([500 TO 1000000] avg_bytes_out: 20,773.002 conmections_count: 60

G) 4 rocord_id: beSZOS0-0325-452C-0506-50CO2362402 record_tine: 804,983,070,000 sre_ip: pinebady.prodigy.
Visualize (1 warning &) om _id: AVANGfgOr4fukOAZEYT_ _type: threshold_alert _index: logisland.2016.11.09 _score:

alert_match_query

avg_bytes_out Link to /logisland.2016.11.09/threshold_alert/AVhN6fq0r4fukoATEvT.
- Table Isow

‘connections_count

) atimestamp @ @ m July 6th 1995, 00:24:30.000
gD _id @ @ D AVANGFgOr4fukoaZEvT_
D _index @ logisland.2016.11.09
src_ip _score o

—type @ threshold_alert

alert_match_name @ Q (D too_many_connections
alert_match_query @ @ [connections_count:[500 To 1000000]
avgbytesout @ @ D 20,773.002

connections_count @ @ @ 604

record_id @ @ M bde92060-d325-492-9506-5dc92362402b.
record_time @ @ m 804,983,070,000

record_type @ Q@ [[threshold_alert

srcip @ @ M piwebaly.prodigy.con

» July 6th 1995, 00:13:45.000

€0597747-3Ff2-4ef0-0609-3e50ee46ac0a record_time: 804,982,425,000 src_ip: news.ti.com
_id: AVANGTQOr4fukOA7EYUA _type: threshold_alert _index: logisland.2016.11.09 _score:

_static/comment-close.png

_images/kibana-configure-index-netflow.png
|/ Ml settings-kibana x ([ApacheSpot (incul. x \\

<« C () | ® sandbox:5601/app/kibana#/settings/indices/?_g=(refreshinterval:(display:'5%20seconds’pause:it,section:1value:s ¥ | [@ Bk

Apps B hurence M logisland Wm stage <7 Spark Streaminc M questions/résur [} Mining Console | [I stage | Trello

Index Patterns

et Configure an index pattern

patter. You must select or

create one fo confinue. In order to use Kibana you must configure at least one index pattern. Index patterns are used to identify the Elasticsearch index to run search

‘and analytics against. They are also used to configure fields.

9l Index contains time-based events

) Use event times to create index names [DEPRECATED]

Index name or pattern

Patterns allow you to define dynamic index names using * as a wildcard. Example: logstash-*

netflow:

) Do not expand index pattern when searching (Not recommended)

By defaul, searches against any time-based index pattern that contains a wildcard will automatically be expanded to query only the
indices that contain data within the currently selected time range.

Searching against the index pattern logstash-" wil actually query elasticsearch for the specific matching indices (e.g. logstash-2015.12.21)
that fall within the current time range.

Time-fieldname @ refresh fields

@timestamp v

_static/plus.png

_images/kibana-logisland-metrics-packet-stream-pycapa.png
e

Selected Fields
&
Available Fields
vailable Fiel (o] L
stal 2
@tmestamp g w
_id 20
_index o
214000
_score
_type
dest_port
Time
dstip
> April 26th 2017, 21:49:00.000
olobal_magic
ip_checksum

ip_datagram_total_length
ip_flags
ip_fragment_offset
ip_idenifcation > April 26th 2017, 21:49:00.000
ip_intemet_header_length

ip_time_to_live,

ip_type_of_sevice

ip_version

LTI > April 26th 2017, 21:49:00.000
processor_name

protocol

record_errors

record_id

record_ime > April 26th 2017, 21:49:00.000
record_type

stc_ip

src_port

tep_acknowledgment_number

April 26th 2017, 21:39:08 675 - April 26th 2017,21:49:08675 — Second ¥

214100 214200 214300 214400 214500 214600 214700 214800 214900
@timestamp per second
~
_source
@timestanp: April 26th 2017, 21:49:00.000 dest_port: 5,601 dst_ip: 172.17.0.2 global magic: 725,372,255 ip_checksum: 56,334 ip_datagram_total length: 40 ip_flags: 0
ip_fragnent_offset: 0 ip_identification: 59,308 ip_internet_header_length: 20 ip time_to_live: 63 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: 6ldc4712-5741-41b7-865a-9548dFd7a8cE record time: 1,493,236,140,034 record_type: pcap_packet src_ip: 10.0.2.2 src_port: 53,545

tcp_acknouledgnent_number:

2,112,156,986 tcp_checksum: 13,994 tcp_conputed_data_length: O tcp_computed dest_ip: 172.17.0.2 tcp_computed_reassembled_length: O tcp_computed_relative

@tinestanp: April 26th 2017, 21:49:00.000 dest_port: 53,545 dst_ip: 10.0.2.2 global magic: -725,372,255 ip_checksum: 35,602 ip_datagram_total length: 45 ip_flags: 2
ip_fragnent_offset: 0 ip identification: 63,395 ip internet_header_length: 20 ip time to_live: 64 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: 4a23d64b-a7ci-4858-5F5a-5b86536697F7 record time: 1,493,236,140,033 record_type: pcap_packet src_ip: 172.17.0.2 src_port: 5,601

tcp_acknouledgnent_number: 417,417,280 tcp_checksum: 47,156 tcp_conputed_data length: 5 tcp_computed dest_ip: 10.0.2.2 tcp_computed_reassembled_length: O tcp_computed_relative ack: 0

@tinestanp: April 26th 2017, 21:49:00.000 dest_port: 5,601 dst_ip: 172.17.0.2 global magic: 725,372,255 ip_checksum: 56,329 ip_datagram_total length: 40 ip_flags: 0
ip_fragnent_offset: 0 ip identification: 59,313 ip_internet_header_length: 20 ip time_to_live: 63 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: 40b094c2-adbl-4723-9Fc5-dcbbSCISIE13 record time: 1,493,236,140,067 record_type: pcap_packet src_ip: 10.0.2.2 src_port: 53,545

tcp_acknouledgnent_number: 2,112,164,223 tcp_checksus

6,757 tcp_computed_data_length: O tcp_computed_dest ip: 172.17.0.2 tcp_computed_reassembled_length: O tcp_computed_relative

@tinestanp: April 26th 2017, 21:49:00.000 dest_port: 5,601 dst ip: 172.17.0.2 global magic: 725,372,255 ip_checksum: 55,663 ip datagram_total length: 732 ip_flags: 0
ip_fragnent_offset: 0 ip_identification: 59,287 ip_internet_header_length: 20 ip time to_live: 63 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: S0602fOb-eScS-4b22-aB42-3506c4283c36 record time: 1,493,236,140,033 record_type: pcap_packet src_ip: 10.0.2.2 src_port: 53,545

tep_acknouledgnent_number: 2,112,131,161 tcp_checksum: 32,605 tcp_computed_data length: 692 tcp_computed dest_ip: 172.17.0.2 tcp_computed_reassembled length:

0 tcp_computed_relative

_static/kibana-logisland-metrics-packet-stream-pycapa.png
e

Selected Fields
&
Available Fields
vailable Fiel (o] L
stal 2
@tmestamp g w
_id 20
_index o
214000
_score
_type
dest_port
Time
dstip
> April 26th 2017, 21:49:00.000
olobal_magic
ip_checksum

ip_datagram_total_length
ip_flags
ip_fragment_offset
ip_idenifcation > April 26th 2017, 21:49:00.000
ip_intemet_header_length

ip_time_to_live,

ip_type_of_sevice

ip_version

LTI > April 26th 2017, 21:49:00.000
processor_name

protocol

record_errors

record_id

record_ime > April 26th 2017, 21:49:00.000
record_type

stc_ip

src_port

tep_acknowledgment_number

April 26th 2017, 21:39:08 675 - April 26th 2017,21:49:08675 — Second ¥

214100 214200 214300 214400 214500 214600 214700 214800 214900
@timestamp per second
~
_source
@timestanp: April 26th 2017, 21:49:00.000 dest_port: 5,601 dst_ip: 172.17.0.2 global magic: 725,372,255 ip_checksum: 56,334 ip_datagram_total length: 40 ip_flags: 0
ip_fragnent_offset: 0 ip_identification: 59,308 ip_internet_header_length: 20 ip time_to_live: 63 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: 6ldc4712-5741-41b7-865a-9548dFd7a8cE record time: 1,493,236,140,034 record_type: pcap_packet src_ip: 10.0.2.2 src_port: 53,545

tcp_acknouledgnent_number:

2,112,156,986 tcp_checksum: 13,994 tcp_conputed_data_length: O tcp_computed dest_ip: 172.17.0.2 tcp_computed_reassembled_length: O tcp_computed_relative

@tinestanp: April 26th 2017, 21:49:00.000 dest_port: 53,545 dst_ip: 10.0.2.2 global magic: -725,372,255 ip_checksum: 35,602 ip_datagram_total length: 45 ip_flags: 2
ip_fragnent_offset: 0 ip identification: 63,395 ip internet_header_length: 20 ip time to_live: 64 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: 4a23d64b-a7ci-4858-5F5a-5b86536697F7 record time: 1,493,236,140,033 record_type: pcap_packet src_ip: 172.17.0.2 src_port: 5,601

tcp_acknouledgnent_number: 417,417,280 tcp_checksum: 47,156 tcp_conputed_data length: 5 tcp_computed dest_ip: 10.0.2.2 tcp_computed_reassembled_length: O tcp_computed_relative ack: 0

@tinestanp: April 26th 2017, 21:49:00.000 dest_port: 5,601 dst_ip: 172.17.0.2 global magic: 725,372,255 ip_checksum: 56,329 ip_datagram_total length: 40 ip_flags: 0
ip_fragnent_offset: 0 ip identification: 59,313 ip_internet_header_length: 20 ip time_to_live: 63 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: 40b094c2-adbl-4723-9Fc5-dcbbSCISIE13 record time: 1,493,236,140,067 record_type: pcap_packet src_ip: 10.0.2.2 src_port: 53,545

tcp_acknouledgnent_number: 2,112,164,223 tcp_checksus

6,757 tcp_computed_data_length: O tcp_computed_dest ip: 172.17.0.2 tcp_computed_reassembled_length: O tcp_computed_relative

@tinestanp: April 26th 2017, 21:49:00.000 dest_port: 5,601 dst ip: 172.17.0.2 global magic: 725,372,255 ip_checksum: 55,663 ip datagram_total length: 732 ip_flags: 0
ip_fragnent_offset: 0 ip_identification: 59,287 ip_internet_header_length: 20 ip time to_live: 63 ip_type of service: 0 ip_version: 4 packet_timestamp_in_nanos: 1,493,236,140,032,000,
000 processor_name: ParsePCap protocol: 6 record_id: S0602fOb-eScS-4b22-aB42-3506c4283c36 record time: 1,493,236,140,033 record_type: pcap_packet src_ip: 10.0.2.2 src_port: 53,545

tep_acknouledgnent_number: 2,112,131,161 tcp_checksum: 32,605 tcp_computed_data length: 692 tcp_computed dest_ip: 172.17.0.2 tcp_computed_reassembled length:

0 tcp_computed_relative

_images/kibana-connection-alerts.png
® O ® /1y quenyMatching - Streaming < x) []] Kibana x ({5 elesticsearch-head x { Whatanalyzer should 1use fo x e

refreshinterval: fvalue:0) time: (from:'1995-06-29T22:00:00.000Z'mod... % | [€ @ % & & + O

isplay:Off, pause

€& C | ® sandbox:5601/app/kibana?#/discover

kibana ~ = == = U —
record_type:connectic lert 5 0 5 o

Selected Fields June 30th 1995, 00:00:00.000 - July Bth 1995, 00:00:00.000 — by 3 hours.
<
3000
Available Fields
a £ 200
@timesiamp H
8
. - I IIIII I III I IIII I
. TR PR TR T R L
1995.07.010200 19507020200 199507030200 1995-07-040200 199507050200 1995-07-060200 19950707 0200
~score. ‘@timestamp per 3 hours
type -~
st match_name . ource
Quick Count @ (500 > July 7th 1995, 06:31:54.000 record type: \connection_alert etimestamp: July 7th 1995, 06:31:54.000 alert match mame: blacklisted_host
‘edu_host aa alert_match_query: Src_ip:slip-5.i0.com bytes_out: 49,152 http method: GET http_query: /shuttle/mission
) §/5ts-T1/movies/sts-71-hatch-open.mpg eep_statuss 200 hekp_versions WTTP/L.0 identds - record_ids asi7?
blackisted_host aa) i
= 07-4337-4cfe-ac7a-356216B8cf3e rocord_raw_value: s1ipé2.van2.pacifier.con - - [07/3u1/1995:00:31:54 ~0400]
GET /shuttle/missions /sts-71/movies /sts-71-hatch-onen.mpa HTTP/1.0 200 49152 record tims: 805.091,514,000
Visuaize (1 warning 4)
alert_ match_query > July 7th 1995, 06:31:52.000 record_type: Connection_alert etimestamp: July 7th 1995, 06: 2.000 alert match name: blacklisted_host
bytes_out alert_match query: Src_ip:slip-5.i0.com bytes_out: 40,310 http method: GET http_query: /shuttle/countdow
http_method n/count.gif nttp status: 200 http version: HTTP/1.0 identd: - record_id: Oedcbd53-1118-dcde-aedd-5df2899
i 60972 record_raw_value: s1ipé2.van2.pacifier.com - - [07/3u1/1995:00:31:52 -0400] GET /shuttle/countdown/co
- unt.gif HTTP/1.0 200 40310 record time: 805,091,512,000 sre ip: s1ipd2.van2.pacifier.com user: 1a: Av
hitp_status
hitp_version > 3uly 7th 1995, 06:30:27.000 recora_type: COMMECEiON_AlErt etimestamp: July 7th 1995, 06:30:27.000 alert_match mame: edu_host
identd alert_match_query: src_ipiedu bytes out: 1,932 http method: GET http query: /shuttle/resources/orbiters/
e orbiters-logo.gif http status: 200 http version: WTTP/L.0 identd: - record id: ffc876bb-9b3f-43a4-9laz-e
) 8764el31bab record raw_value: legt-143.dorms.tamu.edu - - [07/Ju1/1995:00:30:27 -0400] GET /shuttle/resourc

es/orbiters/orbiters-1000.qif HTTP/1.0 200 1032 record time: 805.001,427.000 sre ip: leqt-143.dorms.tamu.e
record_raw_value

record_time. > 2uly 7th 1995, 06:30:16.000 record type: \conmectionalert etimestamp: July 7th 1995, 06:
alert_match_query: src_ip:s1ip-5.10.com bytes_out: 66,554 http method: GET http query: /shuttle/countdow

6.000 alert match_name: blacklisted_host

record_type.
@ n/video/livevideo2.gif http_status: 200 http_version: HTTP/1.0 identd: - record id: f5f7455f-8b8f-44c8-8

B e43-flc024e70cca record_raw_value: s1ip239.rig.qc.ca - - [07/3u1/1995:00:30:16 -0400] GET /shuttle/countdow
user

n/video/1ivevideo2.aif HTTP/1.0 200 66554 record time: 805,091,416,000 sre ip: s19p239.ria.oc.ca users

> July 7th 1995, 06:30:12.000 record type: \CONMECtion_alert etimestamp: July 7th 1995, 06:30:12.000 alert match mame: edu_host
alort_match_query: Src_ipiedu bytes out: 28,426 http method: GET http query: /images/mlp-logo.gif
http_status: 200 http_version: HTTP/1.0 identd: - record_id: 83306869-a774-4b09-8e40-bBe20347ccob
record_raw_value: legt-143.dorms.tamu.edu - - [07/3u1/1995:00:30:12 -0400] GET /images/mlp-logo.gif WTTP/1.

0 200 28426 record time: B05.001,412,000 sre ip: leqt-143.dorms.tamu.edu user: a0 AVRNGFIzrAfukoa7EZ

T———— el sttt bttt ittt ittt ettt

_static/comment.png

_static/data-pyramid-mccandless.png
information

_static/minus.png

_images/spark-job-monitoring.png
® © @ /[indexapacheLogs - Streamin: X 9‘

& > C | ® localhost:4050/streaming/ ex|Ee ¥ Ga ¥ +0:
i apps [[USI] Lambda-Archi.. “3 Pragmatic Program... By Getting started wi @ RegEx Quick Refere... § Improved Fault-tole.. & NiFi [J] Partitions and Parti.. [Kafka Consumer Of.. @) Ambari-hurence [1 Yarn - hurence &2 ES - hurence »

Spoﬁ? s Jobs Stages Storage Environment Executors = Streaming IndexApacheLogs application Ul

Streaming Statisti

Running batches of 4 seconds for 2 minutes 54 seconds since 2016/11/10 11:06:00 (22 completed batches, 775121 records)

Timelines (Last 42 batches, 20 active, 22 completed) Histograms

events/sec
20,000.00:
15,000.00
» Input Rate 10,0000
Aug: 5969.59 eventslsee g 00 00 /\
000
06:08

REE

0 5 10 15 20

‘Scheduling Delay
Avg: 58 seconds 518 ms

Processing Time
Avg: 7 seconds 231 ms

Total Delay
Avg: 1 minute 4 seconds.

Active Batches (20)

Batoh Time ‘Scheduling Delay Output Ops: Succeeded/Total
2016/11/10 11:08:52 -

2016/11/10 11:08:48 -

2016/11/10 11:08:44

2016/11/10 11:08:40

2016/11/10 11:

_static/sparkcontext-broadcast-executors.png
Executor

Spark application aa. Driver

roadcast (m)

Executor

Executor

_static/kibana-configure-index-packet.png
<« C' | ® 127.00.1:5601/app/kibana#/settings/indices/?_g=(refreshinterval:(display:Off, pause:!f,value:0),time:(from:now-15m,mode:quick to:now)) amw 1 & A

Dashboard

Advanced Objects Status

Index Pattems.

[No defaultindex pattern. You must selector Configure an index pattern

create one to continue:
In order to use Kibana you must configure at least one index pattem. Index pattems are used to identify the Elasticsearch index to run search and analytics against. They are also used to configure fields

¥l Index contains time-based events

Use event times to create index names [DEPRECATED]
Index name or pattern
Pattems allow you to define dynamic index names using * as a wildcard. Example: logstash-*

peap’

Do not expand index pattern when searching (Not recommended)
By default, searches against any time-based index pattem that contains a wildcard will automatically be expanded to query only the indices that contain data within the currently selected time range
‘Searching against the index pattem logstash-* il actually query elasticsearch for the specific matching indices (e.g. logstash-2015.12.21) that fall within the current time range.

Time-field name @ refresh fields.

@timestamp

_static/spark-job-monitoring.png
® © @ /[indexapacheLogs - Streamin: X 9‘

& > C | ® localhost:4050/streaming/ ex|Ee ¥ Ga ¥ +0:
i apps [[USI] Lambda-Archi.. “3 Pragmatic Program... By Getting started wi @ RegEx Quick Refere... § Improved Fault-tole.. & NiFi [J] Partitions and Parti.. [Kafka Consumer Of.. @) Ambari-hurence [1 Yarn - hurence &2 ES - hurence »

Spoﬁ? s Jobs Stages Storage Environment Executors = Streaming IndexApacheLogs application Ul

Streaming Statisti

Running batches of 4 seconds for 2 minutes 54 seconds since 2016/11/10 11:06:00 (22 completed batches, 775121 records)

Timelines (Last 42 batches, 20 active, 22 completed) Histograms

events/sec
20,000.00:
15,000.00
» Input Rate 10,0000
Aug: 5969.59 eventslsee g 00 00 /\
000
06:08

REE

0 5 10 15 20

‘Scheduling Delay
Avg: 58 seconds 518 ms

Processing Time
Avg: 7 seconds 231 ms

Total Delay
Avg: 1 minute 4 seconds.

Active Batches (20)

Batoh Time ‘Scheduling Delay Output Ops: Succeeded/Total
2016/11/10 11:08:52 -

2016/11/10 11:08:48 -

2016/11/10 11:08:44

2016/11/10 11:08:40

2016/11/10 11:

_static/c